Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer.

Carlo Ganini, Ivano Amelio, Riccardo Bertolo, Eleonora Candi, Angela Cappello, Chiara Cipriani, Alessandro Mauriello, Carla Marani, Gerry Melino, Manuela Montanaro, Maria Emanuela Natale, Giuseppe Tisone, Yufang Shi, Ying Wang, Pierluigi Bove
Author Information
  1. Carlo Ganini: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. carlo.ganini@students.uniroma2.eu. ORCID
  2. Ivano Amelio: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  3. Riccardo Bertolo: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  4. Eleonora Candi: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  5. Angela Cappello: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  6. Chiara Cipriani: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  7. Alessandro Mauriello: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  8. Carla Marani: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  9. Gerry Melino: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  10. Manuela Montanaro: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  11. Maria Emanuela Natale: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy.
  12. Giuseppe Tisone: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  13. Yufang Shi: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. ORCID
  14. Ying Wang: CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China. ORCID
  15. Pierluigi Bove: Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133, Rome, Italy. pierluigi.bove@uniroma2.it. ORCID

Abstract

Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.

Keywords

References

  1. Cell Rep. 2014 Nov 20;9(4):1507-19 [PMID: 25456139]
  2. Oncotarget. 2017 Dec 15;9(3):3432-3445 [PMID: 29423057]
  3. Am J Transl Res. 2021 Feb 15;13(2):617-631 [PMID: 33594313]
  4. Eur Rev Med Pharmacol Sci. 2021 Mar;25(5):2158 [PMID: 33755947]
  5. Nature. 2013 Jan 24;493(7433):542-6 [PMID: 23242140]
  6. Horm Cancer. 2019 Feb;10(1):24-35 [PMID: 30565014]
  7. Biol Direct. 2020 Nov 19;15(1):25 [PMID: 33213502]
  8. Sci Adv. 2016 Oct 28;2(10):e1601273 [PMID: 27819051]
  9. PLoS One. 2014 Mar 06;9(6):e90764 [PMID: 24603559]
  10. Cell Death Differ. 2019 Sep;26(9):1566-1581 [PMID: 30413783]
  11. Cell Death Differ. 2020 Sep;27(9):2635-2650 [PMID: 32203170]
  12. Cell Death Dis. 2019 Jan 17;10(2):41 [PMID: 30674868]
  13. Cell Death Differ. 2020 Mar;27(3):843-857 [PMID: 31836831]
  14. Biochem Biophys Res Commun. 2007 Jun 22;358(1):277-84 [PMID: 17482573]
  15. Cell Death Dis. 2019 Feb 25;10(3):192 [PMID: 30804330]
  16. Biol Direct. 2019 May 9;14(1):10 [PMID: 31072345]
  17. J Cell Biol. 2016 Aug 1;214(3):249-57 [PMID: 27458133]
  18. Clin Epigenetics. 2019 Aug 5;11(1):115 [PMID: 31383039]
  19. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102 [PMID: 28407145]
  20. Cell Death Differ. 2019 Dec;26(12):2682-2694 [PMID: 30976095]
  21. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  22. Horm Cancer. 2019 Feb;10(1):3-10 [PMID: 30465145]
  23. Biol Direct. 2020 Nov 23;15(1):27 [PMID: 33225966]
  24. Oncotarget. 2016 Aug 16;7(33):53005-53017 [PMID: 27391339]
  25. Int J Biol Sci. 2019 Jan 1;15(1):183-194 [PMID: 30662358]
  26. Sci Rep. 2016 Sep 22;6:33894 [PMID: 27654169]
  27. Cell Death Dis. 2020 Nov 26;11(11):1012 [PMID: 33243973]
  28. Cell Death Discov. 2019 Sep 30;5:139 [PMID: 31583122]
  29. Biol Direct. 2019 Aug 1;14(1):12 [PMID: 31370905]
  30. Biol Direct. 2019 Sep 3;14(1):17 [PMID: 31481097]
  31. Biochemistry. 2009 Jan 20;48(2):242-53 [PMID: 19140693]
  32. Nat Commun. 2021 Jan 14;12(1):366 [PMID: 33446657]
  33. Oncotarget. 2017 Oct 20;8(61):103758-103774 [PMID: 29262598]
  34. Horm Cancer. 2019 Dec;10(4-6):177-189 [PMID: 31713780]
  35. Autophagy. 2021 Dec;17(12):4386-4400 [PMID: 34034634]
  36. FEBS J. 2016 Oct;283(20):3695-3704 [PMID: 27042806]
  37. J Clin Invest. 2020 Apr 1;130(4):1991-2000 [PMID: 32149736]
  38. FEBS J. 2012 Jan;279(1):154-67 [PMID: 22035263]
  39. Urol Oncol. 2019 May;37(5):297.e9-297.e17 [PMID: 30777394]
  40. Oncol Lett. 2021 Aug;22(2):577 [PMID: 34122628]
  41. Biol Direct. 2020 Jun 15;15(1):10 [PMID: 32539851]
  42. Biol Direct. 2020 Oct 14;15(1):18 [PMID: 33054808]
  43. Cell Death Differ. 2021 Jan;28(1):1-4 [PMID: 33318600]
  44. Drug Metab Pers Ther. 2018 Dec 19;33(4):201-205 [PMID: 30207288]
  45. Cell Death Differ. 2019 Jul;26(7):1299-1315 [PMID: 30349076]
  46. Biol Direct. 2020 Jan 15;15(1):1 [PMID: 31941542]
  47. Cell Death Differ. 2020 Jul;27(7):2191-2205 [PMID: 31959915]
  48. Anticancer Drugs. 2014 Mar;25(3):237-43 [PMID: 24217332]
  49. Biol Direct. 2020 Dec 10;15(1):29 [PMID: 33302990]
  50. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1956-60 [PMID: 6929529]
  51. Biol Direct. 2019 Aug 23;14(1):16 [PMID: 31443736]
  52. Dig Liver Dis. 2008 Jul;40 Suppl 2:S265-70 [PMID: 18598999]
  53. J Oncol Pharm Pract. 2014 Apr;20(2):149-53 [PMID: 23676505]
  54. Cell Death Dis. 2021 Jun 21;12(7):636 [PMID: 34155195]
  55. Biol Direct. 2019 Aug 16;14(1):13 [PMID: 31420049]
  56. Nat Rev Genet. 2014 May;15(5):293-306 [PMID: 24662220]
  57. Br J Cancer. 2007 Sep 17;97(6):730-4 [PMID: 17726465]
  58. Cell Death Differ. 2021 Jul;28(7):2145-2159 [PMID: 34127806]
  59. Cell Rep. 2019 May 28;27(9):2798 [PMID: 31141700]
  60. Arch Biochem Biophys. 2000 Jan 15;373(2):435-41 [PMID: 10620369]
  61. Cell Death Dis. 2019 Feb 12;10(2):137 [PMID: 30755591]
  62. Am J Clin Oncol. 2021 Jul 1;44(7):374-382 [PMID: 34014842]
  63. Cell Death Differ. 2021 May;28(5):1512-1531 [PMID: 33328572]
  64. Cell Death Differ. 2019 Jul;26(7):1346-1364 [PMID: 30341421]
  65. Biol Direct. 2019 Feb 13;14(1):4 [PMID: 30760313]
  66. Cell Death Dis. 2020 Nov 2;11(11):942 [PMID: 33139720]
  67. Cell Death Differ. 2021 Jan;28(1):156-169 [PMID: 32694652]
  68. Horm Cancer. 2019 Dec;10(4-6):168-176 [PMID: 31621000]
  69. Cell Death Dis. 2021 Jan 5;12(1):46 [PMID: 33414441]
  70. FEBS Lett. 2019 Jul;593(14):1863-1873 [PMID: 31127856]
  71. Cell Death Differ. 2020 Mar;27(3):858-871 [PMID: 31900427]
  72. Cell Death Differ. 2019 Jan;26(1):83-98 [PMID: 30201975]
  73. Epigenetics. 2019 Oct;14(10):989-1002 [PMID: 31208284]
  74. Cell Death Differ. 2019 Jun;26(6):1037-1047 [PMID: 30185825]
  75. Onco Targets Ther. 2021 May 18;14:3251-3266 [PMID: 34040390]
  76. Mol Nutr Food Res. 2017 Nov;61(11): [PMID: 28759161]
  77. Transplant Proc. 2004 Mar;36(2):283-5 [PMID: 15050134]
  78. Cell Death Differ. 2020 Jun;27(6):1965-1980 [PMID: 31844253]
  79. FEBS J. 2008 Aug;275(15):3884-99 [PMID: 18616471]
  80. Biol Direct. 2020 Sep 16;15(1):13 [PMID: 32938476]
  81. Int J Immunopathol Pharmacol. 2005 Jan-Mar;18(1):95-112 [PMID: 15698515]
  82. Adv Exp Med Biol. 2019;1210:409-436 [PMID: 31900919]
  83. Biomed Res Int. 2013;2013:851428 [PMID: 23841096]
  84. J Biol Chem. 1980 Nov 25;255(22):10630-7 [PMID: 7430142]
  85. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  86. Mol Cell. 2021 Jun 3;81(11):2290-2302.e7 [PMID: 33831358]
  87. Mol Cell Oncol. 2017 May 19;4(6):e1327004 [PMID: 29209641]
  88. Nat Rev Cancer. 2013 Aug;13(8):572-83 [PMID: 23822983]
  89. J Biol Chem. 2019 Sep 6;294(36):13464-13477 [PMID: 31337706]
  90. J Biol Chem. 2010 Feb 12;285(7):4612-20 [PMID: 19948730]
  91. Prostate Cancer Prostatic Dis. 2019 Sep;22(3):446-452 [PMID: 30664733]
  92. Horm Cancer. 2020 Feb;11(1):17-33 [PMID: 31858384]
  93. Dig Dis Sci. 2001 Jan;46(1):128-32 [PMID: 11270776]
  94. Curr Opin Biotechnol. 2021 Apr;68:193-201 [PMID: 33422815]
  95. Horm Cancer. 2019 Jun;10(2-3):77-88 [PMID: 30877616]
  96. Biol Direct. 2019 Nov 13;14(1):20 [PMID: 31722729]
  97. Nat Rev Urol. 2021 Nov;18(11):643-668 [PMID: 34363040]
  98. Cancer Res. 2021 Aug 1;81(15):4066-4078 [PMID: 34183356]
  99. Br J Nutr. 2007 Oct;98(4):667-75 [PMID: 17617936]
  100. Cell Death Dis. 2014 Nov 20;5:e1525 [PMID: 25412303]
  101. Cell Biol Int. 2021 May;45(5):1082-1090 [PMID: 33501702]
  102. Biol Direct. 2019 Nov 21;14(1):22 [PMID: 31752974]
  103. PLoS One. 2017 Apr 5;12(4):e0172786 [PMID: 28379958]
  104. Horm Cancer. 2020 Oct;11(5-6):218-239 [PMID: 32632815]
  105. Vaccine. 2005 May 2;23(24):3114-22 [PMID: 15837210]
  106. Cell Death Differ. 2021 Feb;28(2):606-625 [PMID: 33462414]
  107. Nat Commun. 2020 Jan 7;11(1):52 [PMID: 31911608]
  108. Horm Cancer. 2019 Jun;10(2-3):107-119 [PMID: 31102172]
  109. Cell Death Differ. 2020 Mar;27(3):1134-1153 [PMID: 31409894]
  110. Cell Death Dis. 2019 Oct 17;10(11):786 [PMID: 31624245]
  111. Cell Death Discov. 2020 Jul 28;6:67 [PMID: 32793397]
  112. N Engl J Med. 1948 Jun 3;238(23):787-93 [PMID: 18860765]
  113. Cell Death Differ. 2020 Feb;27(2):434-450 [PMID: 31189926]
  114. Cancers (Basel). 2021 May 14;13(10): [PMID: 34069147]
  115. Br J Cancer. 2017 Jun 6;116(12):1499-1504 [PMID: 28472819]
  116. Cancer Cell. 2019 Mar 18;35(3):385-400.e9 [PMID: 30827887]
  117. Carcinogenesis. 2019 Jul 6;40(6):749-764 [PMID: 30794288]
  118. Cell Death Differ. 2020 May;27(5):1660-1676 [PMID: 31685978]
  119. Cancer Cell. 2019 Mar 18;35(3):339-341 [PMID: 30889375]
  120. Cell Death Dis. 2019 Mar 11;10(3):240 [PMID: 30858354]
  121. Prostate Cancer Prostatic Dis. 2021 Jul 15;: [PMID: 34267333]
  122. Cell Death Differ. 2019 Jan;26(2):199-212 [PMID: 30538286]
  123. Cell Death Differ. 2020 Jun;27(6):1938-1951 [PMID: 31857702]
  124. Biochem J. 1998 Apr 15;331 ( Pt 2):513-9 [PMID: 9531492]
  125. Sci Signal. 2013 Apr 02;6(269):pl1 [PMID: 23550210]
  126. Horm Cancer. 2019 Feb;10(1):36-44 [PMID: 30293206]
  127. Mol Cell. 2016 Jan 21;61(2):185-6 [PMID: 26799763]
  128. Eur Rev Med Pharmacol Sci. 2021 Feb;25(3):1165 [PMID: 33629283]
  129. Sci Rep. 2016 Nov 03;6:36264 [PMID: 27808252]
  130. Cell Metab. 2017 Jan 10;25(1):27-42 [PMID: 27641100]
  131. Cell. 2018 Nov 29;175(6):1546-1560.e17 [PMID: 30500537]
  132. Biol Direct. 2019 Apr 29;14(1):8 [PMID: 31036036]
  133. Cell Death Discov. 2020 Nov 26;6(1):131 [PMID: 33298891]
  134. Horm Cancer. 2020 Aug;11(3-4):182-190 [PMID: 32562083]
  135. Cell Death Dis. 2019 Aug 14;10(8):619 [PMID: 31409773]
  136. Prostate. 2013 Oct;73(14):1561-75 [PMID: 23824605]
  137. Cell Cycle. 2012 Oct 1;11(19):3638-48 [PMID: 22935697]
  138. Biochem J. 1997 Feb 15;322 ( Pt 1):229-34 [PMID: 9078266]
  139. Cell Death Discov. 2020 Sep 16;6:86 [PMID: 33014430]
  140. Cell Death Discov. 2021 Jan 18;7(1):18 [PMID: 33462201]
  141. Cell Death Dis. 2019 Feb 21;10(3):177 [PMID: 30792387]
  142. Trends Biochem Sci. 2014 Apr;39(4):191-8 [PMID: 24657017]
  143. J Crohns Colitis. 2016 Jan;10(1):87-94 [PMID: 26449789]
  144. Cell Cycle. 2010 Sep 15;9(18):3730-9 [PMID: 20855944]
  145. Cell Death Differ. 2019 Jun;26(6):1156-1168 [PMID: 30237511]
  146. Cell Death Differ. 2020 Jul;27(7):2217-2233 [PMID: 31988495]

Grants

  1. AIRC Start-Up ID 23219/Associazione Italiana per la Ricerca sul Cancro
  2. IG#22206/Associazione Italiana per la Ricerca sul Cancro
  3. IG#20473/Associazione Italiana per la Ricerca sul Cancro
  4. #PGR00961/Ministero della Salute
  5. #PGR00961/Ministero della Salute
  6. #PGR00961/Ministero della Salute

Word Cloud

Created with Highcharts 10.0.0cancermetabolismone-carbonroleSerineserineprostatemetabolismspathwaysproliferationanabolicnewenzymesdatapotentialunitessentialbiochemicalimplicatedfundamentalcellularfunctionsbiosynthesisimportantprecursorsgeneralavailabilitymethylgroupstwodistinctinteractingnowbecomingcrucialdenovocytosolicpathwaymitochondrialApartphysiologicalconditionsepithelialalterationsassociatedseveralhighlyneoplasticproliferativepathologiesAccordinglyshowsdeeprearrangementdrivendependencyandrogenicstimulusSeveralexperimentalevidencedescribesinvolvedpathogenesisaimstudyanalyzegeneproteinexpressionpubliclyavailablelargespecimensdatasetorderdissectabovementionedcomplexreshapingenvironmentkindneoplasmsuggestbiomarkerswelltherapygenesbelongingcontextprostaticbringtherapeuticvenuesOne-carbonProstate

Similar Articles

Cited By