Transcriptome Analysis of the Response of Mature Biofilm to Different Doses of LN12 with Amoxicillin and Clarithromycin.

Fang Jin, Hong Yang
Author Information
  1. Fang Jin: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 201100, China. ORCID
  2. Hong Yang: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 201100, China.

Abstract

is a gastrointestinal pathogen with a high infection rate. Probiotics are clinically used as an adjuvant to improve the cure rate and reduce the side effects of antibiotic treatment for . This study is the first to explore the effects of a cell-free supernatant of high- or low-dose LN12 combined with amoxicillin (AMX) and clarithromycin (CLR) on 3192 biofilms in terms of the biofilm biomass, survival rates, biofilm structure, and transcriptome. The results showed that the combination of the CFS of high-dose LN12 with AMX and CLR had stronger effects on the biofilm biomass, survival rate, and structure of 3192 biofilms. 3192 biofilms may increase the expression of NADH-related genes and downregulate flagellar assembly and quorum sensing-related receptor genes to deal with the stronger stress effects of high-dose LN12 with AMX and CLR. In conclusion, the biofilm biomass, survival rate, structure, and transcriptome results showed that the combination of LN12 CFS with AMX and CLR had dose effects. We recommend that compared with low doses, high doses of LN12 combined with AMX and CLR may be more effective for biofilm than low doses.

Keywords

References

  1. J Biol Chem. 2003 Nov 28;278(48):47602-9 [PMID: 12975362]
  2. ACS Omega. 2020 Aug 07;5(32):20080-20089 [PMID: 32832762]
  3. J Biol Chem. 2013 Aug 23;288(34):24705-16 [PMID: 23864658]
  4. Compr Rev Food Sci Food Saf. 2018 Jul;17(4):937-952 [PMID: 33350111]
  5. Front Microbiol. 2020 Jul 31;11:1863 [PMID: 32849451]
  6. 3 Biotech. 2019 Feb;9(2):53 [PMID: 30729077]
  7. Chin Med J (Engl). 2020 Feb 5;133(3):335-343 [PMID: 31929363]
  8. Ecotoxicol Environ Saf. 2021 May 11;218:112229 [PMID: 33991993]
  9. Antimicrob Agents Chemother. 2018 Oct 24;62(11): [PMID: 30181372]
  10. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Jun 1;64(Pt 6):561-3 [PMID: 18540076]
  11. Nat Commun. 2018 Apr 23;9(1):1599 [PMID: 29686259]
  12. J Appl Microbiol. 2020 Apr;128(4):1179-1190 [PMID: 31774610]
  13. J Biomater Sci Polym Ed. 2021 Apr;32(6):813-832 [PMID: 33428545]
  14. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  15. ACS Appl Mater Interfaces. 2020 Jun 18;: [PMID: 32486636]
  16. Gut. 2010 Aug;59(8):1143-53 [PMID: 20525969]
  17. Microbiol Spectr. 2015 Aug;3(4): [PMID: 26350329]
  18. mBio. 2018 Oct 30;9(5): [PMID: 30377283]
  19. Int J Antimicrob Agents. 2017 Oct;50(4):572-580 [PMID: 28666750]
  20. mBio. 2016 Nov 29;7(6): [PMID: 27899502]
  21. Arch Microbiol. 2000 Jul-Aug;174(1-2):1-10 [PMID: 10985736]
  22. Microorganisms. 2021 Jul 28;9(8): [PMID: 34442690]
  23. NPJ Biofilms Microbiomes. 2020 Nov 27;6(1):56 [PMID: 33247117]
  24. Microbiology (Reading). 2011 Sep;157(Pt 9):2445-2455 [PMID: 21602215]
  25. Microbiol Mol Biol Rev. 2018 May 9;82(2): [PMID: 29743338]
  26. J Biol Chem. 2006 Jan 6;281(1):508-17 [PMID: 16260786]
  27. Microorganisms. 2021 Feb 18;9(2): [PMID: 33670726]
  28. J Bacteriol. 2000 Aug;182(15):4257-63 [PMID: 10894735]
  29. mBio. 2015 Jul 07;6(4):e00379 [PMID: 26152582]
  30. ACS Appl Mater Interfaces. 2020 Dec 9;12(49):54316-54327 [PMID: 33236884]
  31. Nat Rev Microbiol. 2013 Jun;11(6):385-99 [PMID: 23652324]
  32. Helicobacter. 2020 Aug;25(4):e12713 [PMID: 32515529]
  33. Pathogens. 2020 Dec 18;9(12): [PMID: 33353223]
  34. Evid Based Complement Alternat Med. 2020 Mar 29;2020:7576818 [PMID: 32308716]
  35. Appl Microbiol Biotechnol. 2019 Feb;103(4):1573-1588 [PMID: 30610283]
  36. J Bacteriol. 2019 Oct 4;201(21): [PMID: 31427391]
  37. Int J Food Microbiol. 2021 Jun 2;347:109189 [PMID: 33838479]
  38. Helicobacter. 2019 Sep;24 Suppl 1:e12638 [PMID: 31486234]
  39. Antimicrob Agents Chemother. 2021 Mar 1;: [PMID: 33649116]
  40. Sci Total Environ. 2018 Mar;616-617:172-178 [PMID: 29112840]
  41. Clin Res Hepatol Gastroenterol. 2017 Sep;41(4):466-475 [PMID: 28552432]
  42. New Microbes New Infect. 2020 Jul 03;36:100726 [PMID: 32714559]
  43. Exp Ther Med. 2015 Mar;9(3):707-716 [PMID: 25667617]
  44. Infect Immun. 2004 Apr;72(4):2358-68 [PMID: 15039361]
  45. Microb Pathog. 2019 Jun;131:112-119 [PMID: 30951818]
  46. World J Gastroenterol. 2006 Jul 7;12(25):3989-93 [PMID: 16810745]
  47. World J Gastroenterol. 2012 Aug 28;18(32):4323-34 [PMID: 22969195]
  48. Microb Pathog. 2019 Oct;135:103641 [PMID: 31330262]
  49. J Control Release. 2019 Apr 28;300:52-63 [PMID: 30825476]

Grants

  1. HUCXY-2016-010/Shanghai Industry-University Joint Research Program

Word Cloud

Created with Highcharts 10.0.0LN12biofilmeffectsAMXCLRrate3192biofilmsbiomasssurvivalstructuretranscriptomedoseshighcombinedresultsshowedcombinationCFShigh-dosestrongermaygenesdoselowgastrointestinalpathogeninfectionProbioticsclinicallyusedadjuvantimprovecurereducesideantibiotictreatmentstudyfirstexplorecell-freesupernatanthigh-low-doseamoxicillinclarithromycintermsratesincreaseexpressionNADH-relateddownregulateflagellarassemblyquorumsensing-relatedreceptordealstressconclusionrecommendcomparedeffectiveTranscriptomeAnalysisResponseMatureBiofilmDifferentDosesAmoxicillinClarithromycinHelicobacterpyloriLactobacillussalivarius

Similar Articles

Cited By