Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa Transit in the Epididymis.

Elena Mele, Raffaella D'Auria, Marika Scafuro, Marianna Marino, Silvia Fasano, Andrea Viggiano, Riccardo Pierantoni, Antonietta Santoro, Rosaria Meccariello
Author Information
  1. Elena Mele: Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy.
  2. Raffaella D'Auria: Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Via S. Allende, 84081 Baronissi, Italy.
  3. Marika Scafuro: Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
  4. Marianna Marino: Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Via S. Allende, 84081 Baronissi, Italy. ORCID
  5. Silvia Fasano: Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinpoli 16, 80138 Naples, Italy.
  6. Andrea Viggiano: Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Via S. Allende, 84081 Baronissi, Italy.
  7. Riccardo Pierantoni: Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinpoli 16, 80138 Naples, Italy.
  8. Antonietta Santoro: Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Via S. Allende, 84081 Baronissi, Italy. ORCID
  9. Rosaria Meccariello: Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy. ORCID

Abstract

The hypothalamus-pituitary-testis axis controls the production of spermatozoa, and the kisspeptin system, comprising Kiss1 and Kiss1 receptor (Kiss1R), is the main central gatekeeper. The activity of the kisspeptin system also occurs in testis and spermatozoa, but currently the need of peripheral kisspeptin to produce gametes is not fully understood. Hence, we characterized kisspeptin system in rat spermatozoa and epididymis caput and cauda and analyzed the possible presence of Kiss1 in the epididymal fluid. The presence of Kiss1 and Kiss1R in spermatozoa collected from epididymis caput and cauda was evaluated by Western blot; significant high Kiss1 levels in the caput ( < 0.001 vs. cauda) and constant levels of Kiss1R proteins were observed. Immunofluorescence analysis revealed that the localization of Kiss1R in sperm head shifts from the posterior region in the epididymis caput to perforatorium in the epididymis cauda. In spermatozoa-free epididymis, Western blot revealed higher expression of Kiss1 and Kiss1R in caput ( < 0.05 vs. cauda). Moreover, immunohistochemistry revealed that Kiss1 and Kiss1R proteins were mainly localized in the secretory epithelial cell types and in contractile myoid cells, respectively. Finally, both dot blot and Elisa revealed the presence of Kiss1 in the epididymal fluid collected from epididymis cauda and caput, indicating that rat epididymis and spermatozoa possess a complete kisspeptin system. In conclusion, we reported for the first time in rodents Kiss1R trafficking in spermatozoa during the epididymis transit and Kiss1 measure in the epididymal fluid, thus suggesting a possible role for the system in spermatozoa maturation and storage within the epididymis.

Keywords

References

  1. Biochem Biophys Res Commun. 2003 Dec 26;312(4):1357-63 [PMID: 14652023]
  2. Biol Reprod. 2001 Aug;65(2):488-95 [PMID: 11466217]
  3. J Neuroendocrinol. 2013 Sep;25(9):839-51 [PMID: 23822722]
  4. Biol Reprod. 2019 Jun 1;100(6):1461-1472 [PMID: 30939204]
  5. Int J Mol Sci. 2021 Jul 29;22(15): [PMID: 34360885]
  6. J Med Primatol. 2016 Jun;45(3):105-11 [PMID: 26987570]
  7. J Exp Zool A Ecol Genet Physiol. 2012 Dec;317(10):630-44 [PMID: 23027641]
  8. Endocrinology. 2015 Apr;156(4):1514-22 [PMID: 25635620]
  9. Int J Androl. 2012 Feb;35(1):63-73 [PMID: 21651574]
  10. Front Endocrinol (Lausanne). 2013 Dec 30;4:198 [PMID: 24416028]
  11. Physiol Rev. 2012 Jul;92(3):1235-316 [PMID: 22811428]
  12. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10972-6 [PMID: 12944565]
  13. Asian J Androl. 2016 Jan-Feb;18(1):3-9 [PMID: 26585699]
  14. Front Endocrinol (Lausanne). 2014 May 08;5:69 [PMID: 24847312]
  15. Biomed Res Int. 2019 Jan 9;2019:5129263 [PMID: 30729125]
  16. N Engl J Med. 2003 Oct 23;349(17):1614-27 [PMID: 14573733]
  17. Int Rev Cytol. 2002;218:69-141 [PMID: 12199520]
  18. Nat Rev Urol. 2016 Jan;13(1):21-32 [PMID: 26620614]
  19. Mol Cell Endocrinol. 2010 Jan 27;314(2):164-9 [PMID: 19464345]
  20. Int J Mol Sci. 2020 Jul 29;21(15): [PMID: 32751076]
  21. Taiwan J Obstet Gynecol. 2017 Aug;56(4):456-462 [PMID: 28805600]
  22. Front Endocrinol (Lausanne). 2018 Dec 03;9:727 [PMID: 30559719]
  23. Cell Biochem Funct. 2010 Jun;28(4):293-9 [PMID: 20517893]
  24. Int J Mol Sci. 2020 Apr 22;21(8): [PMID: 32331420]
  25. Theriogenology. 2020 Aug;152:114-121 [PMID: 32388039]
  26. Curr Med Chem. 2016;23(36):4070-4091 [PMID: 27593959]
  27. Sci Rep. 2016 Jan 12;6:19206 [PMID: 26755241]
  28. Int J Environ Res Public Health. 2019 Jul 22;16(14): [PMID: 31336647]
  29. Curr Neuropharmacol. 2019;17(12):1109-1132 [PMID: 31362658]
  30. Comp Biochem Physiol A Mol Integr Physiol. 2017 Nov;213:46-55 [PMID: 28822779]
  31. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10714-9 [PMID: 17563351]
  32. Theriogenology. 2020 Aug;152:1-7 [PMID: 32339963]
  33. Biol Reprod. 2013 Mar 28;88(3):73 [PMID: 23365413]
  34. Int J Mol Sci. 2021 Sep 19;22(18): [PMID: 34576283]
  35. Eur J Pharmacol. 2017 Jan 5;794:216-223 [PMID: 27890710]
  36. Mol Cell Endocrinol. 2011 Oct 22;346(1-2):84-90 [PMID: 21664234]
  37. Gen Comp Endocrinol. 2020 Dec 1;299:113618 [PMID: 32950583]
  38. Andrologia. 2017 Feb;49(1): [PMID: 27108483]
  39. Gen Comp Endocrinol. 2015 Jan 15;211:81-91 [PMID: 25452028]
  40. Integr Zool. 2017 May;12(3):260-268 [PMID: 27580229]
  41. Reproduction. 2009 Sep;138(3):425-37 [PMID: 19542252]
  42. Front Endocrinol (Lausanne). 2018 Apr 26;9:188 [PMID: 29755406]
  43. Endocr Rev. 2009 Oct;30(6):713-43 [PMID: 19770291]
  44. Reproduction. 2013 Jun 14;146(1):R21-35 [PMID: 23613619]
  45. Reproduction. 2017 Oct;154(4):403-414 [PMID: 28878091]
  46. J Cell Biochem. 2019 Apr;120(4):5042-5054 [PMID: 30269376]
  47. Theriogenology. 2018 Nov;121:134-140 [PMID: 30149259]
  48. Biol Reprod. 2002 May;66(5):1328-35 [PMID: 11967194]
  49. Cancer Metastasis Rev. 2012 Dec;31(3-4):585-91 [PMID: 22692479]
  50. Reproduction. 2014 Jun;147(6):835-45 [PMID: 24567427]
  51. Biol Reprod. 2005 Jan;72(1):14-21 [PMID: 15342353]
  52. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]

MeSH Term

Animals
Epididymis
Kisspeptins
Male
Proteins
Rats
Receptors, Kisspeptin-1
Sperm Maturation
Spermatozoa

Chemicals

Kisspeptins
Proteins
Receptors, Kisspeptin-1

Word Cloud

Created with Highcharts 10.0.0Kiss1epididymisspermatozoaKiss1RcaputcaudakisspeptinsystemrevealedpresenceepididymalfluidblottestisratpossiblecollectedWesternlevels<0vsproteinsKisspeptinhypothalamus-pituitary-testisaxiscontrolsproductioncomprisingreceptormaincentralgatekeeperactivityalsooccurscurrentlyneedperipheralproducegametesfullyunderstoodHencecharacterizedanalyzedevaluatedsignificanthigh001constantobservedImmunofluorescenceanalysislocalizationspermheadshiftsposteriorregionperforatoriumspermatozoa-freehigherexpression05MoreoverimmunohistochemistrymainlylocalizedsecretoryepithelialcelltypescontractilemyoidcellsrespectivelyFinallydotElisaindicatingpossesscompleteconclusionreportedfirsttimerodentstraffickingtransitmeasurethussuggestingrolematurationstoragewithinDifferentialExpressionSystemReceptorTraffickingSpermatozoaTransitEpididymisspermatogenesis

Similar Articles

Cited By (10)