Recombinant BCG Expressing the Subunit 1 of Pertussis Toxin Induces Innate Immune Memory and Confers Protection against Non-Related Pathogens.

Alex I Kanno, Diana Boraschi, Luciana C C Leite, Dunia Rodriguez
Author Information
  1. Alex I Kanno: Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil. ORCID
  2. Diana Boraschi: Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China. ORCID
  3. Luciana C C Leite: Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil.
  4. Dunia Rodriguez: Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil. ORCID

Abstract

BCG has shown the ability to induce protection against unrelated pathogens, which likely depends on an immune mechanism known as innate immune memory or trained immunity. In this study, we evaluated the induction of innate memory by a recombinant BCG strain expressing the genetically detoxified S1 subunit of the pertussis toxin (rBCG-S1PT). In vitro pre-exposure of naïve murine macrophages to rBCG-S1PT increased their innate/inflammatory response (IL-6, TNF-α, and IL-10) to a subsequent challenge with unrelated pathogens, as compared to pre-exposure to wild-type BCG. Following LPS challenge, mice immunized with rBCG-S1PT produced higher levels of IFN-γ, while the release of other inflammatory cytokines was comparable to that measured after BCG immunization. SCID mice previously immunized with rBCG-S1PT and challenged with pathogenic displayed a similar survival curve as BCG-immunized mice but a lower CFU burden in the kidneys, suggesting an innate memory-dependent control of infection. This study highlights the potential of recombinant BCG to increase innate immune memory and, ultimately, non-specific protection, more effectively than wild-type BCG. To our knowledge, this is the first report describing the potential of a recombinant BCG strain to strengthen innate immune memory responses.

Keywords

References

  1. Infect Immun. 2000 Sep;68(9):4877-83 [PMID: 10948100]
  2. Front Cell Infect Microbiol. 2012 Nov 23;2:145 [PMID: 23189273]
  3. Am J Respir Cell Mol Biol. 2010 Aug;43(2):243-52 [PMID: 19805481]
  4. Cell Rep. 2016 Dec 6;17(10):2562-2571 [PMID: 27926861]
  5. Cell Rep. 2019 Sep 3;28(10):2659-2672.e6 [PMID: 31484076]
  6. Urol Oncol. 2010 Sep-Oct;28(5):520-5 [PMID: 19272796]
  7. Microbes Infect. 2008 Feb;10(2):198-202 [PMID: 18248757]
  8. PLoS One. 2017 Jul 7;12(7):e0180143 [PMID: 28686604]
  9. Vaccine. 2009 Dec 9;27(52):7346-51 [PMID: 19782111]
  10. PLoS Pathog. 2020 Apr 2;16(4):e1008404 [PMID: 32240273]
  11. Front Immunol. 2018 Apr 30;9:869 [PMID: 29760700]
  12. Cell Host Microbe. 2018 Jan 10;23(1):89-100.e5 [PMID: 29324233]
  13. J Clin Invest. 2021 Jan 19;131(2): [PMID: 33211672]
  14. Trends Parasitol. 2016 May;32(5):353-355 [PMID: 26953517]
  15. Tuberculosis (Edinb). 2016 Jan;96:71-4 [PMID: 26786657]
  16. Lancet Infect Dis. 2022 Jan;22(1):e2-e12 [PMID: 34506734]
  17. Expert Rev Vaccines. 2021 Aug;20(8):1001-1011 [PMID: 34224293]
  18. Nat Immunol. 2021 Jan;22(1):2-6 [PMID: 33293712]
  19. Front Immunol. 2017 May 09;8:539 [PMID: 28536580]
  20. Cell Host Microbe. 2011 May 19;9(5):355-61 [PMID: 21575907]
  21. J Infect Dis. 1977 Aug;136(2):171-5 [PMID: 894076]
  22. Cell. 2018 Jan 11;172(1-2):176-190.e19 [PMID: 29328912]
  23. Front Immunol. 2019 Nov 29;10:2806 [PMID: 31849980]
  24. Front Immunol. 2017 Sep 13;8:1134 [PMID: 28955344]
  25. J Infect. 2021 Jan;82(1):e41-e43 [PMID: 33248221]
  26. EBioMedicine. 2021 Mar;65:103254 [PMID: 33711798]
  27. J Leukoc Biol. 2017 Jan;101(1):107-119 [PMID: 27780875]
  28. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537-42 [PMID: 22988082]
  29. Front Immunol. 2017 Jun 26;8:734 [PMID: 28694812]
  30. Front Immunol. 2020 Jun 18;11:1202 [PMID: 32625209]
  31. Cell Rep Med. 2021 Jan 19;2(1):100185 [PMID: 33521699]
  32. Clin Vaccine Immunol. 2014 Apr;21(4):534-45 [PMID: 24521784]
  33. Front Immunol. 2018 Aug 22;9:1915 [PMID: 30186286]
  34. J Urol. 1976 Aug;116(2):180-3 [PMID: 820877]
  35. Front Immunol. 2019 Jun 26;10:1460 [PMID: 31297119]
  36. Clin Vaccine Immunol. 2016 Dec 5;23(12):926-933 [PMID: 27733422]
  37. Semin Immunol. 2016 Aug;28(4):328-42 [PMID: 27402055]
  38. Front Immunol. 2018 Apr 19;9:799 [PMID: 29725331]
  39. NPJ Vaccines. 2021 Jan 4;6(1):4 [PMID: 33397991]
  40. J Exp Clin Cancer Res. 2008 Nov 28;27:78 [PMID: 19040745]
  41. Immunol Rev. 2018 May;283(1):7-20 [PMID: 29664563]
  42. Sci Rep. 2021 Jan 12;11(1):774 [PMID: 33436946]

Grants

  1. 2017/24832-6/São Paulo Research Foundation

Word Cloud

Created with Highcharts 10.0.0BCGinnateimmunememoryrBCG-S1PTrecombinantmiceprotectionunrelatedpathogenstrainedimmunitystudystrainpre-exposurechallengewild-typeimmunizedpotentialshownabilityinducelikelydependsmechanismknownevaluatedinductionexpressinggeneticallydetoxifiedS1subunitpertussistoxinvitronaïvemurinemacrophagesincreasedinnate/inflammatoryresponseIL-6TNF-αIL-10subsequentcomparedFollowingLPSproducedhigherlevelsIFN-γreleaseinflammatorycytokinescomparablemeasuredimmunizationSCIDpreviouslychallengedpathogenicdisplayedsimilarsurvivalcurveBCG-immunizedlowerCFUburdenkidneyssuggestingmemory-dependentcontrolinfectionhighlightsincreaseultimatelynon-specificeffectivelyknowledgefirstreportdescribingstrengthenresponsesRecombinantExpressingSubunit1PertussisToxinInducesInnateImmuneMemoryConfersProtectionNon-RelatedPathogens

Similar Articles

Cited By (5)