Current Status of Biodiversity Assessment and Conservation of Wild Olive ( L. subsp. var. ).

Valentina Fanelli, Isabella Mascio, Wahiba Falek, Monica Marilena Miazzi, Cinzia Montemurro
Author Information
  1. Valentina Fanelli: Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy. ORCID
  2. Isabella Mascio: Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy. ORCID
  3. Wahiba Falek: Ecole Nationale Superieure de Biotechnologie, Constantine 251000, Algeria. ORCID
  4. Monica Marilena Miazzi: Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy. ORCID
  5. Cinzia Montemurro: Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy. ORCID

Abstract

Oleaster ( L. subsp. var. ) is the ancestor of cultivated olive ( L. subsp. var. ) and it is spread through the whole Mediterranean Basin, showing an overlapping distribution with cultivated olive trees. Climate change and new emerging diseases are expected to severely affect the cultivations of olive in the future. Oleaster presents a higher genetic variability compared to the cultivated olive and some wild trees were found adapted to particularly harsh conditions; therefore, the role of oleaster in the future of olive cultivation may be crucial. Despite the great potential, only recently the need to deeply characterize and adequately preserve the wild olive resources drew the attention of researchers. In this review, we summarized the most important morphological and genetic studies performed on oleaster trees collected in different countries of the Mediterranean Basin. Moreover, we reviewed the strategies introduced so far to preserve and manage the oleaster germplasm collections, giving a future perspective on their role in facing the future agricultural challenges posed by climatic changes and new emerging diseases.

Keywords

References

  1. Front Plant Sci. 2021 Jul 01;12:662060 [PMID: 34276725]
  2. Front Plant Sci. 2019 Apr 12;10:451 [PMID: 31031787]
  3. C R Acad Sci III. 2000 Feb;323(2):173-81 [PMID: 10763436]
  4. Front Plant Sci. 2018 Sep 21;9:1320 [PMID: 30298075]
  5. Plants (Basel). 2019 Aug 05;8(8): [PMID: 31387331]
  6. Sci Rep. 2019 Dec 10;9(1):18764 [PMID: 31822760]
  7. BMC Plant Biol. 2014 May 28;14:146 [PMID: 24886387]
  8. Sci Total Environ. 2020 Mar 20;709:136161 [PMID: 31905547]
  9. Ann Bot. 2007 Sep;100(3):449-58 [PMID: 17613587]
  10. BMC Biol. 2020 Oct 26;18(1):148 [PMID: 33100219]
  11. Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1051-70 [PMID: 12831472]
  12. Front Plant Sci. 2020 Feb 20;11:73 [PMID: 32153605]
  13. PeerJ. 2018 Jul 11;6:e5260 [PMID: 30018865]
  14. Genes (Basel). 2020 Aug 10;11(8): [PMID: 32785094]
  15. Theor Appl Genet. 2002 May;104(6-7):1209-1216 [PMID: 12582632]
  16. Theor Appl Genet. 2002 Sep;105(4):638-644 [PMID: 12582515]
  17. Genetica. 2011 Sep;139(9):1083-94 [PMID: 21960415]
  18. Theor Appl Genet. 2002 May;104(6-7):1157-1163 [PMID: 12582626]
  19. Molecules. 2021 Feb 28;26(5): [PMID: 33671061]
  20. New Phytol. 2015 Apr;206(1):436-447 [PMID: 25420413]
  21. Front Plant Sci. 2021 Aug 16;12:723879 [PMID: 34484283]
  22. Ann Bot. 2017 Mar 1;119(4):671-679 [PMID: 28028015]
  23. Nat Plants. 2016 Mar 21;2:16022 [PMID: 27249561]
  24. Foods. 2020 Apr 09;9(4): [PMID: 32283713]
  25. Ann Bot. 2006 Nov;98(5):935-42 [PMID: 16935868]
  26. Sensors (Basel). 2020 Jun 02;20(11): [PMID: 32498361]
  27. Front Plant Sci. 2020 May 28;11:629 [PMID: 32547577]
  28. Genes (Basel). 2021 Feb 18;12(2): [PMID: 33670559]
  29. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  30. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  31. BMC Plant Biol. 2011 May 10;11:80 [PMID: 21569271]
  32. Front Plant Sci. 2019 Feb 21;10:139 [PMID: 30846993]
  33. Ann Bot. 2013 Nov;112(7):1293-302 [PMID: 24013386]
  34. Genes (Basel). 2020 Aug 03;11(8): [PMID: 32756391]
  35. Evolution. 1986 May;40(3):643-645 [PMID: 28556335]
  36. Genes (Basel). 2021 Sep 23;12(10): [PMID: 34680869]
  37. Plant Cell Rep. 2017 Sep;36(9):1345-1360 [PMID: 28434019]
  38. Plant Dis. 2019 Oct;103(10):2559-2568 [PMID: 31432752]
  39. PLoS One. 2019 Oct 17;14(10):e0223716 [PMID: 31622375]
  40. Antioxidants (Basel). 2020 Oct 17;9(10): [PMID: 33080812]
  41. Genes (Basel). 2021 Feb 10;12(2): [PMID: 33578843]
  42. Sci Rep. 2018 Oct 26;8(1):15877 [PMID: 30367101]
  43. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  44. Front Plant Sci. 2019 Mar 13;10:291 [PMID: 30918509]
  45. Proc Biol Sci. 2013 Feb 06;280(1756):20122833 [PMID: 23390107]
  46. Ann Eugen. 1951 Mar;15(4):323-54 [PMID: 24540312]
  47. Plant J. 2019 Oct;100(1):143-157 [PMID: 31192486]
  48. Front Plant Sci. 2018 Feb 27;9:232 [PMID: 29535746]
  49. BMC Res Notes. 2012 Jan 20;5:52 [PMID: 22264277]
  50. Front Genet. 2019 Aug 21;10:755 [PMID: 31497033]

Word Cloud

Created with Highcharts 10.0.0olivefutureoleasterLsubspvarcultivatedtreesgeneticOleasterMediterraneanBasinnewemergingdiseaseswildrolepreservemorphologicalancestorspreadwholeshowingoverlappingdistributionClimatechangeexpectedseverelyaffectcultivationspresentshighervariabilitycomparedfoundadaptedparticularlyharshconditionsthereforecultivationmaycrucialDespitegreatpotentialrecentlyneeddeeplycharacterizeadequatelyresourcesdrewattentionresearchersreviewsummarizedimportantstudiesperformedcollecteddifferentcountriesMoreoverreviewedstrategiesintroducedfarmanagegermplasmcollectionsgivingperspectivefacingagriculturalchallengesposedclimaticchangesCurrentStatusBiodiversityAssessmentConservationWildOlivebiodiversityconservationgenebanksanalysismolecularmarkersevaluation

Similar Articles

Cited By