Evaluation of Reference Genes in the Polyploid Complex (Caryophyllaceae) Using qPCR.

Alba Rodríguez-Parra, Jesús Picazo-Aragonés, Francisco Balao
Author Information
  1. Alba Rodríguez-Parra: Departament of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080 Seville, Spain.
  2. Jesús Picazo-Aragonés: Departament of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080 Seville, Spain. ORCID
  3. Francisco Balao: Departament of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080 Seville, Spain. ORCID

Abstract

is an endemic complex which is considered the largest polyploid series within the Dianthus genus. This polyploid species involves four cytotypes (2×, 4×, 6× and 12×) with spatial and ecological segregation. The study of gene expression in polyploid species must be very rigorous because of the effects of duplications on gene regulation. In these cases, real-time polymerase chain reaction (qPCR) is the most appropriate technique for determining the gene expression profile because of its high sensitivity. The relative quantification strategy using qPCR requires genes with stable expression, known as reference genes, for normalization. In this work, we evaluated the stability of 13 candidate genes to be considered reference genes in leaf and petal tissues in . Several statistical analyses were used to determine the most stable candidate genes: Bayesian analysis, network analysis based on equivalence tests, geNorm and BestKeeper algorithms. In the leaf tissue, the most stable candidate genes were TIP41, TIF5A, PP2A and SAMDC. Similarly, the most adequate reference genes were H3.1, TIP41, TIF5A and ACT7 in the petal tissue. Therefore, we suggest that the best reference genes to compare different ploidy levels for both tissues in are TIP41 and TIF5A.

Keywords

References

  1. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  2. Curr Opin Genet Dev. 2015 Dec;35:119-25 [PMID: 26656231]
  3. Int J Mol Sci. 2018 May 24;19(6): [PMID: 29794972]
  4. Sci Rep. 2014 Oct 27;4:6781 [PMID: 25345678]
  5. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14746-53 [PMID: 22908297]
  6. Sci Rep. 2020 Mar 19;10(1):5070 [PMID: 32193506]
  7. Methods Mol Biol. 2016;1363:89-121 [PMID: 26577784]
  8. Plant Cell. 2011 May;23(5):1719-28 [PMID: 21540436]
  9. Sci Rep. 2015 Jan 28;5:8094 [PMID: 25627791]
  10. Anal Biochem. 2010 Apr 15;399(2):257-61 [PMID: 20005862]
  11. DNA Res. 2014 Jun;21(3):231-41 [PMID: 24344172]
  12. Am J Bot. 2009 Jan;96(1):336-48 [PMID: 21628192]
  13. Vet Pathol. 2006 Nov;43(6):934-42 [PMID: 17099150]
  14. Plant Physiol. 2007 Jul;144(3):1531-45 [PMID: 17513484]
  15. Sci Rep. 2021 Apr 7;11(1):7573 [PMID: 33828187]
  16. Mol Ecol Resour. 2016 Jan;16(1):80-90 [PMID: 25944158]
  17. Planta. 2011 Jan;233(1):163-73 [PMID: 20960006]
  18. Proc Biol Sci. 2010 May 22;277(1687):1489-96 [PMID: 20106850]
  19. Molecules. 2018 Mar 30;23(4): [PMID: 29601541]
  20. Sci Rep. 2016 Dec 06;6:38513 [PMID: 27922100]
  21. J Exp Bot. 2004 Jul;55(402):1445-54 [PMID: 15208338]
  22. Annu Rev Plant Biol. 2009;60:561-88 [PMID: 19575590]
  23. New Phytol. 2010 Jul;187(2):542-551 [PMID: 20456054]
  24. Annu Rev Plant Biol. 2007;58:377-406 [PMID: 17280525]
  25. Nat Rev Genet. 2017 Jul;18(7):411-424 [PMID: 28502977]
  26. PLoS One. 2017 Aug 17;12(8):e0183470 [PMID: 28817728]
  27. PLoS One. 2017 Nov 1;12(11):e0186978 [PMID: 29091948]
  28. New Phytol. 2011 Oct;192(1):256-265 [PMID: 21651562]
  29. J Exp Bot. 2021 Jul 28;72(15):5522-5533 [PMID: 33909906]
  30. Mol Breed. 2012 Oct;30(3):1237-1252 [PMID: 23024595]
  31. PLoS One. 2018 May 10;13(5):e0196438 [PMID: 29746477]
  32. Mol Biol Rep. 2021 Feb;48(2):1037-1044 [PMID: 33547533]
  33. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  34. Funct Plant Biol. 2007 Aug;34(8):673-682 [PMID: 32689395]
  35. Mol Biol Rep. 2014 Oct;41(10):6525-35 [PMID: 24985981]
  36. Biotechniques. 2008 Apr;44(5):619-26 [PMID: 18474036]
  37. Annu Rev Genet. 2000;34:401-437 [PMID: 11092833]
  38. Plant J. 2018 Jun;94(6):991-1009 [PMID: 29602224]
  39. Front Plant Sci. 2016 Apr 25;7:536 [PMID: 27200013]
  40. PLoS One. 2013 Aug 19;8(8):e71448 [PMID: 23977043]
  41. Heredity (Edinb). 2003 Aug;91(2):91-2 [PMID: 12886270]
  42. Genome Biol Evol. 2010;2:534-46 [PMID: 20671102]
  43. New Phytol. 2016 Nov;212(3):571-576 [PMID: 27483440]
  44. Front Plant Sci. 2017 Oct 31;8:1876 [PMID: 29163601]
  45. PLoS One. 2013;8(2):e56573 [PMID: 23437174]
  46. Ann Bot. 2009 Oct;104(5):965-73 [PMID: 19633312]
  47. Cell. 2012 Oct 26;151(3):476-82 [PMID: 23101621]
  48. New Phytol. 2019 Apr;222(2):1076-1087 [PMID: 30585629]
  49. Trends Genet. 2010 Oct;26(10):425-30 [PMID: 20708291]
  50. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9 [PMID: 19667210]
  51. Sci Rep. 2019 Nov 7;9(1):16231 [PMID: 31700128]
  52. Trends Genet. 2003 Mar;19(3):141-7 [PMID: 12615008]

Grants

  1. PGC2018-098358-B-I00/Ministerio de Ciencia e Innovación - Agencia Estatal de Innovación
  2. PRE2019-088229/Ministerio de Ciencia e Innovación

Word Cloud

Created with Highcharts 10.0.0genesreferenceqPCRpolyploidgeneexpressionstablecandidateTIP41TIF5AconsideredDianthusspeciesleafpetaltissuesanalysistissueendemiccomplexlargestserieswithingenusinvolvesfourcytotypes12×spatialecologicalsegregationstudymustrigorouseffectsduplicationsregulationcasesreal-timepolymerasechainreactionappropriatetechniquedeterminingprofilehighsensitivityrelativequantificationstrategyusingrequiresknownnormalizationworkevaluatedstability13Severalstatisticalanalysesuseddeterminegenes:BayesiannetworkbasedequivalencetestsgeNormBestKeeperalgorithmsPP2ASAMDCSimilarlyadequateH31ACT7ThereforesuggestbestcomparedifferentploidylevelsEvaluationReferenceGenesPolyploidComplexCaryophyllaceaeUsingbroteripolyploidy

Similar Articles

Cited By (2)