Methods Combining Genomic and Epidemiological Data in the Reconstruction of Transmission Trees: A Systematic Review.

Hélène Duault, Benoit Durand, Laetitia Canini
Author Information
  1. Hélène Duault: Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), 94700 Maisons-Alfort, France.
  2. Benoit Durand: Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), 94700 Maisons-Alfort, France. ORCID
  3. Laetitia Canini: Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), 94700 Maisons-Alfort, France.

Abstract

In order to better understand transmission dynamics and appropriately target control and preventive measures, studies have aimed to identify who-infected-whom in actual outbreaks. Numerous reconstruction methods exist, each with their own assumptions, types of data, and inference strategy. Thus, selecting a method can be difficult. Following PRISMA guidelines, we systematically reviewed the literature for methods combing epidemiological and genomic data in transmission tree reconstruction. We identified 22 methods from the 41 selected articles. We defined three families according to how genomic data was handled: a non-phylogenetic family, a sequential phylogenetic family, and a simultaneous phylogenetic family. We discussed methods according to the data needed as well as the underlying sequence mutation, within-host evolution, transmission, and case observation. In the non-phylogenetic family consisting of eight methods, pairwise genetic distances were estimated. In the phylogenetic families, transmission trees were inferred from phylogenetic trees either simultaneously (nine methods) or sequentially (five methods). While a majority of methods (17/22) modeled the transmission process, few (8/22) took into account imperfect case detection. Within-host evolution was generally (7/8) modeled as a coalescent process. These practical and theoretical considerations were highlighted in order to help select the appropriate method for an outbreak.

Keywords

References

  1. EBioMedicine. 2018 Nov;37:410-416 [PMID: 30341041]
  2. Mol Biol Evol. 2017 Apr 1;34(4):997-1007 [PMID: 28100788]
  3. Proc Natl Acad Sci U S A. 2007 May 8;104(19):7993-8 [PMID: 17470818]
  4. Nature. 2009 Jun 25;459(7250):1122-5 [PMID: 19516283]
  5. J Infect. 2019 Mar;78(3):187-199 [PMID: 30503842]
  6. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  7. BMC Genomics. 2017 Dec 6;18(Suppl 10):918 [PMID: 29244009]
  8. Proc Biol Sci. 2008 Apr 22;275(1637):887-95 [PMID: 18230598]
  9. Mol Biol Evol. 2019 Jun 1;36(6):1333-1343 [PMID: 30873529]
  10. Am J Epidemiol. 2020 Jul 1;189(7):735-745 [PMID: 32242216]
  11. Virus Evol. 2018 Jun 08;4(1):vey016 [PMID: 29942656]
  12. PLoS Genet. 2015 Aug 12;11(8):e1005421 [PMID: 26267488]
  13. Epidemiol Infect. 2019 Jan;147:e88 [PMID: 30869021]
  14. Ann Appl Stat. 2016 Mar;10(1):395-417 [PMID: 27042253]
  15. PLoS One. 2014 Nov 18;9(11):e112928 [PMID: 25405861]
  16. Lancet Infect Dis. 2013 Feb;13(2):137-46 [PMID: 23158499]
  17. Epidemiol Infect. 2019 Jan;147:e188 [PMID: 31364521]
  18. Science. 2020 Oct 30;370(6516):564-570 [PMID: 32912998]
  19. Science. 2014 Sep 12;345(6202):1369-72 [PMID: 25214632]
  20. Int Health. 2015 Mar;7(2):130-8 [PMID: 25733563]
  21. Elife. 2015 Mar 03;4: [PMID: 25732036]
  22. Antimicrob Agents Chemother. 2014 Dec;58(12):7347-57 [PMID: 25267672]
  23. Microbiol Spectr. 2017 Jul;5(4): [PMID: 28812540]
  24. Virus Res. 2020 Oct 2;287:198098 [PMID: 32687861]
  25. Infect Genet Evol. 2015 Jun;32:440-8 [PMID: 25861750]
  26. J Infect Dis. 2016 Oct 15;214(suppl 3):S102-S109 [PMID: 27377746]
  27. Clin Infect Dis. 2020 May 23;70(11):2396-2402 [PMID: 31342067]
  28. PLoS Pathog. 2018 Feb 8;14(2):e1006885 [PMID: 29420641]
  29. PLoS Comput Biol. 2019 Apr 8;15(4):e1006650 [PMID: 30958812]
  30. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  31. PLoS Comput Biol. 2014 Jan;10(1):e1003457 [PMID: 24465202]
  32. PLoS Pathog. 2011 Jun;7(6):e1002094 [PMID: 21731491]
  33. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21242-7 [PMID: 21078965]
  34. Viruses. 2020 Sep 12;12(9): [PMID: 32932642]
  35. PLoS Comput Biol. 2019 Mar 29;15(3):e1006930 [PMID: 30925168]
  36. Am J Trop Med Hyg. 2018 Oct;99(4):867-874 [PMID: 29987998]
  37. PLoS Comput Biol. 2016 Apr 12;12(4):e1004869 [PMID: 27070316]
  38. Genetics. 2014 Dec;198(4):1395-404 [PMID: 25313129]
  39. Antimicrob Agents Chemother. 2015 Dec 07;60(3):1249-57 [PMID: 26643351]
  40. Eur Respir J. 2020 Jun 4;55(6): [PMID: 32366488]
  41. Epidemics. 2013 Mar;5(1):44-55 [PMID: 23438430]
  42. Nat Commun. 2020 Oct 6;11(1):5006 [PMID: 33024095]
  43. Nat Microbiol. 2018 Sep;3(9):983-988 [PMID: 30061758]
  44. PLoS Comput Biol. 2015 Nov 23;11(11):e1004633 [PMID: 26599399]
  45. PLoS Comput Biol. 2016 Sep 28;12(9):e1005130 [PMID: 27681228]
  46. J Virol. 2013 May;87(9):4907-22 [PMID: 23408630]
  47. J Clin Microbiol. 2010 Sep;48(9):3403-6 [PMID: 20592143]
  48. Res Vet Sci. 2019 Jun;124:406-416 [PMID: 31078788]
  49. PLoS Med. 2019 Oct 31;16(10):e1002961 [PMID: 31671150]
  50. Philos Trans R Soc Lond B Biol Sci. 2019 Jun 24;374(1775):20180258 [PMID: 31056055]
  51. Genetics. 2013 Nov;195(3):1055-62 [PMID: 24037268]
  52. PeerJ. 2018 Jan 3;6:e4210 [PMID: 29312831]
  53. Lancet Infect Dis. 2015 Mar;15(3):320-6 [PMID: 25619149]
  54. Cladistics. 2015 Dec;31(6):679-691 [PMID: 34753271]
  55. Euro Surveill. 2019 Sep;24(38): [PMID: 31552821]
  56. Microb Genom. 2018 Dec;4(12): [PMID: 30629483]
  57. Virus Evol. 2017 Mar 11;3(1):vex006 [PMID: 28458916]
  58. PLoS Comput Biol. 2014 Dec 04;10(12):e1003919 [PMID: 25474353]
  59. J Virol. 2011 Jun;85(11):5312-22 [PMID: 21430049]
  60. Syst Biol. 2017 Jan 1;66(1):e47-e65 [PMID: 28173504]
  61. Microb Genom. 2020 Apr;6(4): [PMID: 32234123]
  62. J Comp Pathol. 2003 Jul;129(1):1-36 [PMID: 12859905]
  63. J Gen Virol. 2007 Nov;88(Pt 11):3100-3111 [PMID: 17947536]
  64. Sci Rep. 2016 Aug 04;6:30858 [PMID: 27489095]
  65. Curr Opin Microbiol. 2015 Feb;23:62-7 [PMID: 25461574]
  66. PLoS Comput Biol. 2014 Mar 27;10(3):e1003549 [PMID: 24675511]
  67. Rev Sci Tech. 2016 Apr;35(1):287-96 [PMID: 27217184]
  68. AIDS. 2017 Jun 1;31(9):1211-1222 [PMID: 28353537]
  69. PLoS One. 2012;7(9):e46156 [PMID: 23029421]
  70. BMC Bioinformatics. 2012 May 08;13:87 [PMID: 22568821]
  71. Perspect Psychol Sci. 2021 Jan;16(1):175-187 [PMID: 33301692]
  72. Sci Transl Med. 2017 Nov 22;9(417): [PMID: 29167391]
  73. mSphere. 2020 Jan 15;5(1): [PMID: 31941816]
  74. BMC Infect Dis. 2004 Sep 06;4:32 [PMID: 15347429]
  75. Proc Biol Sci. 2014 Nov 7;281(1794):20141324 [PMID: 25253455]
  76. PLoS One. 2020 Jul 15;15(7):e0235660 [PMID: 32667952]
  77. Open Forum Infect Dis. 2018 Apr 28;5(5):ofy095 [PMID: 30294616]
  78. Microb Genom. 2020 Nov;6(11): [PMID: 33174832]
  79. Microb Genom. 2019 Apr;5(4): [PMID: 30939107]
  80. PLoS Comput Biol. 2014 Apr 03;10(4):e1003505 [PMID: 24699231]
  81. Mol Biol Evol. 2019 Aug 1;36(8):1804-1816 [PMID: 31058982]
  82. IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):230-242 [PMID: 34255632]
  83. PLoS Comput Biol. 2018 Apr 18;14(4):e1006117 [PMID: 29668677]
  84. Sci Rep. 2016 Nov 09;6:36839 [PMID: 27827462]
  85. Proc Biol Sci. 2012 Feb 7;279(1728):444-50 [PMID: 21733899]
  86. Sci Rep. 2019 Aug 30;9(1):12615 [PMID: 31471545]
  87. PLoS Pathog. 2012 Dec;8(12):e1003081 [PMID: 23308065]
  88. Elife. 2016 Aug 09;5: [PMID: 27502557]
  89. PLoS Comput Biol. 2015 Dec 30;11(12):e1004613 [PMID: 26717515]
  90. Sci Rep. 2019 Mar 18;9(1):4809 [PMID: 30886211]
  91. Influenza Other Respir Viruses. 2019 Nov;13(6):556-563 [PMID: 31536169]
  92. J R Soc Interface. 2011 Sep 7;8(62):1346-56 [PMID: 21325314]
  93. J Infect Dis. 2013 Mar 1;207(5):730-5 [PMID: 23230058]
  94. J Infect Dis. 2016 Feb 15;213(4):502-8 [PMID: 25995194]
  95. Genetics. 2009 Dec;183(4):1421-30 [PMID: 19797047]
  96. J Biomed Inform. 2016 Dec;64:44-54 [PMID: 27612975]
  97. Math Biosci. 2007 Jul;208(1):300-11 [PMID: 17174352]
  98. Mol Biol Evol. 2014 Jul;31(7):1869-79 [PMID: 24714079]
  99. Proc Biol Sci. 2014 Mar 11;281(1782):20133251 [PMID: 24619442]
  100. Nat Commun. 2019 Mar 29;10(1):1411 [PMID: 30926780]
  101. CMAJ. 2003 Aug 19;169(4):285-92 [PMID: 12925421]
  102. Infect Genet Evol. 2016 Nov;45:262-267 [PMID: 27619057]
  103. Heredity (Edinb). 2011 Feb;106(2):383-90 [PMID: 20551981]
  104. Bioinformatics. 2020 Feb 1;36(3):945-947 [PMID: 31418766]
  105. Front Microbiol. 2012 Jul 31;3:278 [PMID: 22993510]
  106. Bioinformatics. 2020 Jul 1;36(Suppl_1):i362-i370 [PMID: 32657399]
  107. Stat Appl Genet Mol Biol. 2020 Oct 21;: [PMID: 33085643]
  108. Annu Rev Virol. 2016 Sep 29;3(1):173-195 [PMID: 27501264]
  109. BMC Bioinformatics. 2018 Oct 22;19(Suppl 11):363 [PMID: 30343663]
  110. PLoS Comput Biol. 2017 May 18;13(5):e1005495 [PMID: 28545083]
  111. Emerg Infect Dis. 2021 Feb;27(2):508-516 [PMID: 33496244]
  112. J Gen Virol. 2006 Jul;87(Pt 7):2031-2040 [PMID: 16760406]
  113. Transbound Emerg Dis. 2019 Sep;66(5):2074-2086 [PMID: 31131968]
  114. PLoS One. 2016 Oct 12;11(10):e0164397 [PMID: 27732618]
  115. Am J Epidemiol. 2017 Nov 15;186(10):1209-1216 [PMID: 29149252]
  116. Elife. 2019 Oct 08;8: [PMID: 31591959]
  117. Ann Agric Environ Med. 2013;20(3):455-9 [PMID: 24069849]
  118. PLoS Comput Biol. 2012;8(11):e1002768 [PMID: 23166481]
  119. Mutat Res. 2017 Aug;800-802:37-45 [PMID: 28646746]
  120. Viruses. 2020 Mar 18;12(3): [PMID: 32197553]
  121. Proc Biol Sci. 2013 Jan 7;280(1750):20122173 [PMID: 23135678]
  122. PLoS One. 2018 Nov 28;13(11):e0202615 [PMID: 30485280]
  123. Science. 2010 Jan 22;327(5964):469-74 [PMID: 20093474]
  124. Brief Bioinform. 2021 May 20;22(3): [PMID: 32734294]

Word Cloud

Created with Highcharts 10.0.0methodstransmissiondatafamilyphylogeneticgenomicorderwho-infected-whomreconstructionmethodtreefamiliesaccordingnon-phylogeneticevolutioncasetreesmodeledprocessbetterunderstanddynamicsappropriatelytargetcontrolpreventivemeasuresstudiesaimedidentifyactualoutbreaksNumerousexistassumptionstypesinferencestrategyThusselectingcandifficultFollowingPRISMAguidelinessystematicallyreviewedliteraturecombingepidemiologicalidentified2241selectedarticlesdefinedthreehandled:sequentialsimultaneousdiscussedneededwellunderlyingsequencemutationwithin-hostobservationconsistingeightpairwisegeneticdistancesestimatedinferredeithersimultaneouslyninesequentiallyfivemajority17/228/22tookaccountimperfectdetectionWithin-hostgenerally7/8coalescentpracticaltheoreticalconsiderationshighlightedhelpselectappropriateoutbreakMethodsCombiningGenomicEpidemiologicalDataReconstructionTransmissionTrees:SystematicReviewepidemiology

Similar Articles

Cited By