Influence of Aerosol Delivered BCG Vaccination on Immunological and Disease Parameters Following SARS-CoV-2 Challenge in Rhesus Macaques.

Andrew D White, Laura Sibley, Charlotte Sarfas, Alexandra L Morrison, Kevin Bewley, Colin Churchward, Susan Fotheringham, Konstantinos Gkolfinos, Karen Gooch, Alastair Handley, Holly E Humphries, Laura Hunter, Chelsea Kennard, Stephanie Longet, Adam Mabbutt, Miriam Moffatt, Emma Rayner, Tom Tipton, Robert Watson, Yper Hall, Mark Bodman-Smith, Fergus Gleeson, Mike Dennis, Francisco J Salguero, Miles Carroll, Helen McShane, William Cookson, Julian Hopkin, Sally Sharpe
Author Information
  1. Andrew D White: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  2. Laura Sibley: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  3. Charlotte Sarfas: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  4. Alexandra L Morrison: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  5. Kevin Bewley: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  6. Colin Churchward: National Heart and Lung Institute, Imperial College London, London, United Kingdom.
  7. Susan Fotheringham: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  8. Konstantinos Gkolfinos: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  9. Karen Gooch: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  10. Alastair Handley: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  11. Holly E Humphries: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  12. Laura Hunter: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  13. Chelsea Kennard: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  14. Stephanie Longet: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  15. Adam Mabbutt: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  16. Miriam Moffatt: National Heart and Lung Institute, Imperial College London, London, United Kingdom.
  17. Emma Rayner: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  18. Tom Tipton: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  19. Robert Watson: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  20. Yper Hall: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  21. Mark Bodman-Smith: Infection and Immunity Research Institute, St George's University of London, London, United Kingdom.
  22. Fergus Gleeson: Department of Oncology, Churchill Hospital, Oxford, United Kingdom.
  23. Mike Dennis: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  24. Francisco J Salguero: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  25. Miles Carroll: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.
  26. Helen McShane: The Jenner Institute, University of Oxford, Oxford, United Kingdom.
  27. William Cookson: National Heart and Lung Institute, Imperial College London, London, United Kingdom.
  28. Julian Hopkin: College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom.
  29. Sally Sharpe: Research and Evaluation, United Kingdom Health Security Agency, Salisbury, United Kingdom.

Abstract

The tuberculosis vaccine, Bacille Calmette-Guerin (BCG), also affords protection against non-tuberculous diseases attributable to heterologous immune mechanisms such as trained innate immunity, activation of non-conventional T-cells, and cross-reactive adaptive immunity. Aerosol vaccine delivery can target immune responses toward the primary site of infection for a respiratory pathogen. Therefore, we hypothesised that aerosol delivery of BCG would enhance cross-protective action against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and be a deployable intervention against coronavirus disease 2019 (COVID-19). Immune parameters were monitored in vaccinated and unvaccinated rhesus macaques for 28 days following aerosol BCG vaccination. High-dose SARS-CoV-2 challenge was applied by intranasal and intrabronchial instillation and animals culled 6-8 days later for assessment of viral, disease, and immunological parameters. Mycobacteria-specific cell-mediated immune responses were detected following aerosol BCG vaccination, but SARS-CoV-2-specific cellular- and antibody-mediated immunity was only measured following challenge. Early secretion of cytokine and chemokine markers associated with the innate cellular and adaptive antiviral immune response was detected following SARS-CoV-2 challenge in vaccinated animals, at concentrations that exceeded titres measured in unvaccinated macaques. Classical CD14+ monocytes and Vδ2 γδ T-cells quantified by whole-blood immunophenotyping increased rapidly in vaccinated animals following SARS-CoV-2 challenge, indicating a priming of innate immune cells and non-conventional T-cell populations. However, viral RNA quantified in nasal and pharyngeal swabs, bronchoalveolar lavage (BAL), and tissue samples collected at necropsy was equivalent in vaccinated and unvaccinated animals, and in-life CT imaging and histopathology scoring applied to pulmonary tissue sections indicated that the disease induced by SARS-CoV-2 challenge was comparable between vaccinated and unvaccinated groups. Hence, aerosol BCG vaccination did not induce, or enhance the induction of, SARS-CoV-2 cross-reactive adaptive cellular or humoral immunity, although an influence of BCG vaccination on the subsequent immune response to SARS-CoV-2 challenge was apparent in immune signatures indicative of trained innate immune mechanisms and primed unconventional T-cell populations. Nevertheless, aerosol BCG vaccination did not enhance the initial clearance of virus, nor reduce the occurrence of early disease pathology after high dose SARS-CoV-2 challenge. However, the heterologous immune mechanisms primed by BCG vaccination could contribute to the moderation of COVID-19 disease severity in more susceptible species following natural infection.

Keywords

References

  1. Sci Rep. 2021 Apr 16;11(1):8356 [PMID: 33863950]
  2. Med J Aust. 2020 Jun;212(10):459-462 [PMID: 32237278]
  3. Front Immunol. 2021 Mar 08;12:632478 [PMID: 33763077]
  4. Indian J Pediatr. 2020 Sep;87(9):749 [PMID: 32519258]
  5. Allergy. 2020 Jul;75(7):1824-1827 [PMID: 32330314]
  6. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  7. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25203-25204 [PMID: 32994350]
  8. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  9. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  10. Front Immunol. 2020 May 08;11:970 [PMID: 32574258]
  11. Sci Adv. 2020 Jun 10;6(24):eaba8399 [PMID: 32577525]
  12. Clin Immunol. 2014 Dec;155(2):213-9 [PMID: 25451159]
  13. Sci Adv. 2021 Sep 10;7(37):eabg7996 [PMID: 34516768]
  14. Front Immunol. 2021 Aug 05;12:692729 [PMID: 34421902]
  15. Arch Dis Child. 2010 Sep;95(9):662-7 [PMID: 20716675]
  16. Clin Vaccine Immunol. 2015 Sep;22(9):992-1003 [PMID: 26108288]
  17. Nature. 2020 Oct;586(7830):509-515 [PMID: 32967005]
  18. Commun Biol. 2021 Jul 26;4(1):915 [PMID: 34312487]
  19. Cell Host Microbe. 2018 Jan 10;23(1):89-100.e5 [PMID: 29324233]
  20. Front Immunol. 2018 Dec 04;9:2869 [PMID: 30564249]
  21. Lab Anim. 2018 Dec;52(6):599-610 [PMID: 29482429]
  22. Sci Rep. 2017 Mar 03;7:43478 [PMID: 28256545]
  23. Nat Med. 2021 Jan;27(1):28-33 [PMID: 33442016]
  24. NPJ Vaccines. 2021 Feb 22;6(1):28 [PMID: 33619260]
  25. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  26. Immunity. 2020 Jun 16;52(6):910-941 [PMID: 32505227]
  27. Tuberculosis (Edinb). 2016 Dec;101:174-190 [PMID: 27865390]
  28. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  29. J Innate Immun. 2014;6(2):152-8 [PMID: 24192057]
  30. Front Immunol. 2021 Sep 08;12:743924 [PMID: 34567010]
  31. Nat Commun. 2021 Feb 24;12(1):1260 [PMID: 33627662]
  32. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17720-17726 [PMID: 32647056]
  33. Z Immunitatsforsch Exp Klin Immunol. 1972 May;143(4):363-76 [PMID: 4282920]
  34. Pharmaceutics. 2020 Apr 25;12(5): [PMID: 32344890]
  35. Vaccine. 2021 Aug 9;39(34):4885-4894 [PMID: 34253420]
  36. J Immunol. 1999 Apr 1;162(7):3942-9 [PMID: 10201913]
  37. Cell. 2018 Jan 11;172(1-2):176-190.e19 [PMID: 29328912]
  38. Front Immunol. 2019 Nov 29;10:2806 [PMID: 31849980]
  39. Allergy. 2020 Jul;75(7):1815-1819 [PMID: 32339299]
  40. J Infect Dis. 2021 Apr 8;223(7):1145-1149 [PMID: 33411935]
  41. Science. 2020 Aug 14;369(6505):812-817 [PMID: 32434946]
  42. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537-42 [PMID: 22988082]
  43. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  44. Am Rev Respir Dis. 1973 Mar;107(3):351-8 [PMID: 4632221]
  45. Cell Rep Med. 2021 Jan 19;2(1):100185 [PMID: 33521699]
  46. Nat Protoc. 2021 Jun;16(6):3114-3140 [PMID: 33893470]
  47. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]

MeSH Term

Adaptive Immunity
Aerosols
Animals
BCG Vaccine
COVID-19
Cross Reactions
DNA, Viral
Disease Models, Animal
Humans
Immunity, Heterologous
Immunity, Innate
Immunomodulation
Lymphocyte Activation
Macaca mulatta
Receptors, Antigen, T-Cell, gamma-delta
SARS-CoV-2
T-Lymphocytes
Vaccination

Chemicals

Aerosols
BCG Vaccine
DNA, Viral
Receptors, Antigen, T-Cell, gamma-delta

Word Cloud

Created with Highcharts 10.0.0BCGSARS-CoV-2immunevaccinationchallengefollowingimmunityaerosoldiseasevaccinatedinnateunvaccinatedanimalsmechanismstrainedadaptiveAerosolinfectionenhanceCOVID-19vaccineheterologousnon-conventionalT-cellscross-reactivedeliveryresponsesrespiratoryparametersmacaquesdaysappliedviraldetectedmeasuredcellularresponsequantifiedT-cellpopulationsHowevertissueprimedtuberculosisBacilleCalmette-Guerinalsoaffordsprotectionnon-tuberculousdiseasesattributableactivationcantargettowardprimarysitepathogenThereforehypothesisedcross-protectiveactionsevereacutesyndromecoronavirus-2deployableinterventioncoronavirus2019Immunemonitoredrhesus28High-doseintranasalintrabronchialinstillationculled6-8laterassessmentimmunologicalMycobacteria-specificcell-mediatedSARS-CoV-2-specificcellular-antibody-mediatedEarlysecretioncytokinechemokinemarkersassociatedantiviralconcentrationsexceededtitresClassicalCD14+monocytesVδ2γδwhole-bloodimmunophenotypingincreasedrapidlyindicatingprimingcellsRNAnasalpharyngealswabsbronchoalveolarlavageBALsamplescollectednecropsyequivalentin-lifeCTimaginghistopathologyscoringpulmonarysectionsindicatedinducedcomparablegroupsHenceinduceinductionhumoralalthoughinfluencesubsequentapparentsignaturesindicativeunconventionalNeverthelessinitialclearancevirusreduceoccurrenceearlypathologyhighdosecontributemoderationseveritysusceptiblespeciesnaturalInfluenceDeliveredVaccinationImmunologicalDiseaseParametersFollowingChallengeRhesusMacaquescross-protectionmacaquenon-specific

Similar Articles

Cited By