Do microplastics impair male dominance interactions in fish? A test of the vector hypothesis.

Ally Swank, Kadijah Blevins, Abby Bourne, Jessica Ward
Author Information
  1. Ally Swank: Department of Biology Ball State University Muncie Indiana USA.
  2. Kadijah Blevins: Department of Biology Ball State University Muncie Indiana USA.
  3. Abby Bourne: Department of Biology Ball State University Muncie Indiana USA.
  4. Jessica Ward: Department of Biology Ball State University Muncie Indiana USA. ORCID

Abstract

Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub-lethal behavioral changes that can affect individual fitness, but these effects are understudied. Many plastic additives introduced during the manufacture of MPs are known endocrine-disrupting chemicals (EDCs) that mimic the action of natural hormones, alter sexual and competitive behavior, and impair reproductive success in fish. In addition, EDCs and other aquatic contaminants may adhere to MPs in the environment, the latter of which may serve as transport vectors for these compounds (i.e., ). In this study, we staged territorial contests between control males, and males exposed to virgin MP particles or to MPs previously immersed in one of two environmentally relevant concentrations of 17-alpha ethinyl estradiol (EE2; 5 ng/L and 25 ng/L) to evaluate the independent and synergistic effects of exposure to MPs and a common environmental estrogen on male-male aggression and competitive territory acquisition in a freshwater fish, . Short-term (30 days) dietary exposure to MPs did not impair the ability of males to successfully compete for and obtain a breeding territory. Overall levels of aggression in control and exposed males were also similar across trial series. These results help to fill a critical knowledge gap regarding the direct and indirect (vector-borne) effects of MPs on the reproductive behavior of aquatic vertebrates in freshwater systems.

Keywords

Associated Data

Dryad | 10.5061/dryad.6q573n60z

References

  1. Environ Int. 2014 Aug;69:104-19 [PMID: 24825791]
  2. Horm Behav. 2009 Sep;56(3):315-21 [PMID: 19576897]
  3. Environ Pollut. 2020 Apr;259:113937 [PMID: 31952101]
  4. J Hazard Mater. 2018 Oct 15;360:97-105 [PMID: 30098534]
  5. Environ Sci Eur. 2014;26(1):12 [PMID: 28936382]
  6. Sci Total Environ. 2018 Dec 15;645:1029-1039 [PMID: 30248828]
  7. Environ Sci Technol. 2016 Apr 5;50(7):4054-60 [PMID: 26950772]
  8. Horm Behav. 2017 Aug;94:21-32 [PMID: 28571937]
  9. Environ Res. 2018 Apr;162:135-143 [PMID: 29306661]
  10. Environ Sci Technol. 2002 Mar 15;36(6):1202-11 [PMID: 11944670]
  11. Aquat Toxicol. 2021 Feb;231:105737 [PMID: 33422861]
  12. Philos Trans R Soc Lond B Biol Sci. 2009 Jul 27;364(1526):1985-98 [PMID: 19528051]
  13. Aquat Toxicol. 2006 Jun 10;78(1):91-102 [PMID: 16494955]
  14. Mar Pollut Bull. 2015 Jul 15;96(1-2):491-5 [PMID: 26013589]
  15. Sci Total Environ. 2019 Feb 15;651(Pt 1):162-170 [PMID: 30227286]
  16. Crit Rev Toxicol. 2012 Sep;42(8):653-68 [PMID: 22697575]
  17. Environ Toxicol Chem. 2018 Nov;37(11):2776-2796 [PMID: 30328173]
  18. PLoS One. 2018 Mar 1;13(3):e0193308 [PMID: 29494635]
  19. Water Res. 2015 May 15;75:63-82 [PMID: 25746963]
  20. Environ Toxicol Chem. 2016 Jan;35(1):212-7 [PMID: 26513338]
  21. Environ Int. 2017 Apr;101:133-142 [PMID: 28143645]
  22. Integr Comp Biol. 2019 Dec 1;59(6):1485-1496 [PMID: 31127301]
  23. Sci Total Environ. 2014 Sep 15;493:656-61 [PMID: 24995635]
  24. Environ Pollut. 2019 Nov;254(Pt B):113024 [PMID: 31454586]
  25. Ecotoxicol Environ Saf. 2019 Oct 30;182:109442 [PMID: 31352214]
  26. Environ Res. 2018 Nov;167:411-417 [PMID: 30118960]
  27. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994 Nov;109(3):i-v [PMID: 7894885]
  28. Gen Comp Endocrinol. 2009 Apr;161(2):202-7 [PMID: 19174165]
  29. Chemosphere. 2010 Apr;79(5):541-6 [PMID: 20189629]
  30. Environ Toxicol Chem. 2009 May;28(5):953-61 [PMID: 19650224]
  31. Sci Total Environ. 2005 May 1;343(1-3):1-34 [PMID: 15862833]
  32. Curr Opin Pharmacol. 2014 Dec;19:105-11 [PMID: 25244397]
  33. Environ Toxicol Chem. 2016 Jul;35(7):1656-66 [PMID: 26752309]
  34. Behav Brain Res. 2006 Jan 30;166(2):291-5 [PMID: 16143408]
  35. Mar Pollut Bull. 2020 Sep;158:111446 [PMID: 32753222]
  36. Sci Rep. 2018 Aug 3;8(1):11639 [PMID: 30076314]
  37. Int J Mol Sci. 2020 Feb 19;21(4): [PMID: 32093039]
  38. Environ Sci Pollut Res Int. 2016 May;23(9):8819-26 [PMID: 26810664]
  39. Ecol Evol. 2022 Feb 16;12(2):e8620 [PMID: 35222975]
  40. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8897-901 [PMID: 17517636]
  41. Sci Total Environ. 2018 Aug 1;631-632:550-559 [PMID: 29529442]
  42. Parasitology. 2003;126 Suppl:S103-8 [PMID: 14667177]
  43. Environ Sci Technol. 2011 Apr 1;45(7):3116-22 [PMID: 21366307]
  44. Ecotoxicol Environ Saf. 1985 Jun;9(3):321-6 [PMID: 4006831]
  45. Mar Pollut Bull. 2001 Aug;42(8):643-55 [PMID: 11525282]
  46. Environ Res. 2018 Jul;164:430-443 [PMID: 29573718]
  47. Aquat Toxicol. 2009 Mar 9;91(4):346-54 [PMID: 19157579]
  48. Environ Sci Technol. 2019 Sep 3;53(17):10188-10196 [PMID: 31393116]
  49. Glob Chang Biol. 2016 Jan;22(1):180-9 [PMID: 26149723]
  50. Environ Toxicol Chem. 2007 Feb;26(2):271-8 [PMID: 17713215]
  51. Aquat Toxicol. 2016 Jan;170:89-103 [PMID: 26642093]
  52. PLoS One. 2017 Oct 19;12(10):e0186807 [PMID: 29049393]
  53. Mar Pollut Bull. 2011 Aug;62(8):1596-605 [PMID: 21742351]
  54. Environ Int. 2020 Jan;134:105047 [PMID: 31731002]
  55. Sci Rep. 2017 Dec 5;7(1):17006 [PMID: 29208925]
  56. Bull Environ Contam Toxicol. 2021 Oct;107(4):730-735 [PMID: 31912186]
  57. Ecotoxicol Environ Saf. 2019 Jul 30;176:226-233 [PMID: 30939402]
  58. Aquat Toxicol. 2004 Jul 14;68(4):369-92 [PMID: 15177953]

Word Cloud

Created with Highcharts 10.0.0MPsaquaticmaleseffectsimpairaggressioncriticalenvironmentalalsoEDCssexualcompetitivebehaviorreproductivefishmaycontrolexposedexposureestrogenterritoryfreshwaterMicroplasticswidespreadenvironmentsbecomeissuerecentyearsdueadverseimpactsphysiologyreproductionsurvivalanimalsExposurepotentialinducesub-lethalbehavioralchangescanaffectindividualfitnessunderstudiedManyplasticadditivesintroducedmanufactureknownendocrine-disruptingchemicalsmimicactionnaturalhormonesaltersuccessadditioncontaminantsadhereenvironmentlatterservetransportvectorscompoundsiestudystagedterritorialcontestsvirginMPparticlespreviouslyimmersedonetwoenvironmentallyrelevantconcentrations17-alphaethinylestradiolEE25 ng/L25 ng/Levaluateindependentsynergisticcommonmale-maleacquisitionShort-term30 daysdietaryabilitysuccessfullycompeteobtainbreedingOveralllevelssimilaracrosstrialseriesresultshelpfillknowledgegapregardingdirectindirectvector-bornevertebratessystemsmicroplasticsmaledominanceinteractionsfish?testvectorhypothesisendocrine‐disruptingchemicalmale–malecompetitionmultiplestressorsselection

Similar Articles

Cited By