Proline-based solution maintains cell viability and stemness of canine adipose-derived mesenchymal stem cells after hypothermic storage.

Pongsatorn Horcharoensuk, Sunantha Yang-En, Amarin Narkwichean, Ruttachuk Rungsiwiwut
Author Information
  1. Pongsatorn Horcharoensuk: Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand. ORCID
  2. Sunantha Yang-En: Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand.
  3. Amarin Narkwichean: Department of Obstetrics and Gynaecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand.
  4. Ruttachuk Rungsiwiwut: Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand. ORCID

Abstract

Transportation of mesenchymal stem cells (MSCs) under hypothermic conditions in 0.9% normal saline solution (NSS) might increase cell death and alter the stemness of MSCs. The present study aimed to evaluate the effect of proline-based solution (PL-BS) on cell viability and the stemness of newly established canine adipose-derived mesenchymal stem cells (cAD-MSCs) under hypothermic conditions. Characterized cAD-MSCs were stored in 1, 10, and 100 mM PL-BS or NSS at 4°C for 6, 9, and 12 hours prior to an evaluation. The results demonstrated that storage in 1 mM PL-BS for 6 hours decreased cell apoptosis and proliferation ability, but improved cell viability and mitochondrial membrane potential. cAD-MSCs maintained their high expression of CD44 and CD90, but had a low expression of CD34 and MHC class II. Trilineage differentiation ability of cAD-MSCs was not affected by storage in 1 mM PL-BS. Gene expression analysis demonstrated that immunomodulatory genes, including IDO, HGF, PGE-2, and IL-6, were upregulated in cAD-MSCs stored in 1 mM PL-BS. In conclusion, PL-BS can be effectively applied for storing cAD-MSCs under hypothermic conditions. These findings provide a new solution for effective handling of cAD-MSCs which might be promising for clinical applications.

References

  1. Stem Cell Res Ther. 2017 Dec 06;8(1):277 [PMID: 29212557]
  2. Front Vet Sci. 2021 Jan 13;7:610240 [PMID: 33521084]
  3. Transfusion. 2018 Feb;58(2):461-469 [PMID: 29210068]
  4. Cell Stress Chaperones. 2016 Mar;21(2):367-72 [PMID: 26634370]
  5. Sci Rep. 2016 May 27;6:26298 [PMID: 27230257]
  6. PLoS One. 2016 Dec 1;11(12):e0167442 [PMID: 27907211]
  7. Stem Cells Dev. 2011 Aug;20(8):1297-308 [PMID: 21303266]
  8. Vet Immunol Immunopathol. 2014 Sep 15;161(1-2):21-31 [PMID: 25026887]
  9. Sci Rep. 2016 Jul 14;6:26326 [PMID: 27412080]
  10. Cell Transplant. 2013;22(6):1075-86 [PMID: 23043973]
  11. Res Vet Sci. 2018 Aug;119:19-26 [PMID: 29783120]
  12. Sci Rep. 2020 Dec 14;10(1):21853 [PMID: 33318571]
  13. PLoS One. 2010 Dec 07;5(12):e14247 [PMID: 21151872]
  14. Tissue Eng Part A. 2008 Jun;14(6):1007-15 [PMID: 19230125]
  15. Cytotherapy. 2013 Apr;15(4):460-6 [PMID: 23318345]
  16. Cryobiology. 2011 Oct;63(2):67-75 [PMID: 21620818]
  17. Arch Med Res. 2021 Jan;52(1):93-101 [PMID: 32977984]
  18. Kidney Int. 1990 Dec;38(6):1151-8 [PMID: 1963649]
  19. Arterioscler Thromb Vasc Biol. 2011 May;31(5):986-1000 [PMID: 21508345]
  20. J Transl Med. 2019 Aug 13;17(1):265 [PMID: 31409351]
  21. Stem Cell Investig. 2019 Sep 25;6:34 [PMID: 31620481]
  22. BMC Vet Res. 2012 Aug 31;8:150 [PMID: 22937862]
  23. J Biol Chem. 1986 Jul 5;261(19):8734-7 [PMID: 3459727]
  24. Protein Sci. 2000 Feb;9(2):344-52 [PMID: 10716186]
  25. Cell Commun Signal. 2011 May 14;9:12 [PMID: 21569606]
  26. Am J Transplant. 2003 Mar;3(3):273-80 [PMID: 12614281]
  27. Cells. 2021 Apr 28;10(5): [PMID: 33925059]
  28. Amino Acids. 2008 Feb;34(2):315-20 [PMID: 17086481]
  29. Stem Cells Int. 2017;2017:4176292 [PMID: 28246532]
  30. Stem Cells Int. 2017;2017:8178643 [PMID: 28740516]
  31. Cytotherapy. 2006;8(4):315-7 [PMID: 16923606]
  32. Vitam Horm. 2011;87:39-59 [PMID: 22127236]
  33. J Cell Biochem. 2009 Oct 15;108(3):577-88 [PMID: 19650110]
  34. Stem Cell Investig. 2018 Jun 07;5:19 [PMID: 30050919]
  35. Cell. 2018 May 3;173(4):851-863.e16 [PMID: 29576452]
  36. Stem Cell Res Ther. 2020 Jul 31;11(1):329 [PMID: 32736659]
  37. Vaccines (Basel). 2015 Sep 10;3(3):703-29 [PMID: 26378585]
  38. Antioxid Redox Signal. 2013 Sep 20;19(9):998-1011 [PMID: 23581681]
  39. Regen Med. 2017 Mar;12(2):111-114 [PMID: 28244826]
  40. PeerJ. 2017 May 17;5:e3301 [PMID: 28533959]
  41. Cryo Letters. 2013 Jul-Aug;34(4):432-52 [PMID: 23995411]
  42. Stem Cells Transl Med. 2016 May;5(5):658-69 [PMID: 27025693]
  43. Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
  44. Eur J Pharm Biopharm. 2014 Apr;86(3):459-68 [PMID: 24240028]
  45. J Tissue Eng Regen Med. 2008 Oct;2(7):436-44 [PMID: 18720444]
  46. Transfus Apher Sci. 2018 Feb;57(1):127-131 [PMID: 29523397]
  47. Stem Cells Transl Med. 2015 Jun;4(6):539-47 [PMID: 25873747]
  48. J Basic Clin Physiol Pharmacol. 2018 Dec 19;30(1):91-101 [PMID: 30205645]
  49. Cryobiology. 2019 Dec;91:23-29 [PMID: 31693877]
  50. Front Vet Sci. 2020 May 29;7:278 [PMID: 32656249]
  51. Mol Med Rep. 2019 Mar;19(3):2189-2201 [PMID: 30664198]

MeSH Term

Adipose Tissue
Animals
Cell Differentiation
Cell Proliferation
Cell Survival
Cells, Cultured
Dogs
Mesenchymal Stem Cells
Proline

Chemicals

Proline

Word Cloud

Created with Highcharts 10.0.0cAD-MSCsPL-BScellhypothermicsolution1mMmesenchymalstemcellsconditionsstemnessviabilitystorageexpressionMSCsNSSmightcanineadipose-derivedstored6hoursdemonstratedabilityTransportation09%normalsalineincreasedeathalterpresentstudyaimedevaluateeffectproline-basednewlyestablishedCharacterized101004°C912priorevaluationresultsdecreasedapoptosisproliferationimprovedmitochondrialmembranepotentialmaintainedhighCD44CD90lowCD34MHCclassIITrilineagedifferentiationaffectedGeneanalysisimmunomodulatorygenesincludingIDOHGFPGE-2IL-6upregulatedconclusioncaneffectivelyappliedstoringfindingsprovideneweffectivehandlingpromisingclinicalapplicationsProline-basedmaintains

Similar Articles

Cited By