Partial p53 reactivation is sufficient to induce cancer regression.

Boris Klimovich, Laura Meyer, Nastasja Merle, Michelle Neumann, Alexander M König, Nikolaos Ananikidis, Corinna U Keber, Sabrina Elmshäuser, Oleg Timofeev, Thorsten Stiewe
Author Information
  1. Boris Klimovich: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.
  2. Laura Meyer: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.
  3. Nastasja Merle: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.
  4. Michelle Neumann: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.
  5. Alexander M König: Clinic of Diagnostic and Interventional Radiology, Core Facility 7T-small animal MRI, Philipps-University, Marburg, Germany.
  6. Nikolaos Ananikidis: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.
  7. Corinna U Keber: Institute for Pathology, University Hospital Marburg, Philipps-University, Marburg, Germany.
  8. Sabrina Elmshäuser: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.
  9. Oleg Timofeev: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany. timofeev@staff.uni-marburg.de.
  10. Thorsten Stiewe: Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany. stiewe@uni-marburg.de. ORCID

Abstract

BACKGROUND: Impaired p53 function is one of the central molecular features of a tumor cell and even a partial reduction in p53 activity can increase the cancer risk in mice and men. From a therapeutic perspective it is noteworthy that tumor cells often become addicted to the absence of p53 providing a rationale for developing p53 reactivating compounds to treat cancer patients. Unfortunately, many of the compounds that are currently undergoing preclinical and clinical testing fail to fully reactivate mutant p53 proteins, raising the crucial question: how much p53 activity is needed to elicit a therapeutic effect?
METHODS: We have genetically modelled partial p53 reactivation using knock-in mice with inducible expression of the p53 variant E177R. This variant has a reduced ability to bind and transactivate target genes and consequently causes moderate cancer susceptibility. We have generated different syngeneically transplanted and autochthonous mouse models of p53-deficient acute myeloid leukemia and B or T cell lymphoma. After cancer manifestation we have activated E177R expression and analyzed the in vivo therapy response by bioluminescence or magnetic resonance imaging. The molecular response was further characterized in vitro by assays for gene expression, proliferation, senescence, differentiation, apoptosis and clonogenic growth.
RESULTS: We report the conceptually intriguing observation that the p53 variant E177R, which promotes de novo leukemia and lymphoma formation, inhibits proliferation and viability, induces immune cell infiltration and triggers cancer regression in vivo when introduced into p53-deficient leukemia and lymphomas. p53-deficient cancer cells proved to be so addicted to the absence of p53 that even the low-level activity of E177R is detrimental to cancer growth.
CONCLUSIONS: The observation that a partial loss-of-function p53 variant promotes tumorigenesis in one setting and induces regression in another, underlines the highly context-specific effects of individual p53 mutants. It further highlights the exquisite sensitivity of cancer cells to even small changes in p53 activity and reveals that changes in activity level are more important than the absolute level. As such, the study encourages ongoing research efforts into mutant p53 reactivating drugs by providing genetic proof-of-principle evidence that incomplete p53 reactivation may suffice to elicit a therapeutic response.

Keywords

References

  1. Nature. 2007 Feb 8;445(7128):661-5 [PMID: 17251932]
  2. Nat Med. 2002 Mar;8(3):282-8 [PMID: 11875500]
  3. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6413-7 [PMID: 1631137]
  4. Mol Cell Biol. 1996 Sep;16(9):4952-60 [PMID: 8756654]
  5. EMBO Mol Med. 2021 Feb 5;13(2):e10852 [PMID: 33314700]
  6. Cell Death Dis. 2018 Apr 18;9(5):439 [PMID: 29670092]
  7. Cancer Cell. 2006 Dec;10(6):501-14 [PMID: 17157790]
  8. Mol Cell Biol. 1998 Jul;18(7):3692-8 [PMID: 9632751]
  9. Oncogene. 2022 Feb;41(7):1011-1023 [PMID: 34907344]
  10. Cell Death Dis. 2016 Feb 04;7:e2083 [PMID: 26844698]
  11. Nature. 2010 Nov 25;468(7323):572-5 [PMID: 21107428]
  12. Cancer Cell. 2017 Jan 9;31(1):142-156 [PMID: 28017613]
  13. Nature. 1992 Mar 19;356(6366):215-21 [PMID: 1552940]
  14. Cell Rep. 2019 Jul 30;28(5):1370-1384.e5 [PMID: 31365877]
  15. PLoS Genet. 2013;9(8):e1003726 [PMID: 23966881]
  16. Cell Death Differ. 2018 Jan;25(1):93-103 [PMID: 29099489]
  17. Biomolecules. 2020 Feb 15;10(2): [PMID: 32075247]
  18. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34074758]
  19. Cancer Cell. 2021 Feb 8;39(2):225-239.e8 [PMID: 33357454]
  20. Nat Struct Mol Biol. 2010 Apr;17(4):423-9 [PMID: 20364130]
  21. EMBO J. 1996 Feb 15;15(4):827-38 [PMID: 8631304]
  22. Nature. 2010 Nov 25;468(7323):567-71 [PMID: 21107427]
  23. Nucleic Acids Res. 2014 Dec 16;42(22):e168 [PMID: 25300484]
  24. Cell Stem Cell. 2010 Nov 5;7(5):606-17 [PMID: 21040902]
  25. Drug Resist Updat. 2018 May;38:27-43 [PMID: 29857816]
  26. J Clin Invest. 2011 Mar;121(3):893-904 [PMID: 21285512]
  27. Nature. 1985 Dec 12-18;318(6046):533-8 [PMID: 3906410]
  28. Nature. 2015 Jul 16;523(7560):352-6 [PMID: 26009011]
  29. J Clin Oncol. 2021 May 10;39(14):1584-1594 [PMID: 33449813]
  30. Cell Death Differ. 2013 Apr;20(4):576-88 [PMID: 23306555]
  31. Cancer Cell. 2018 Aug 13;34(2):298-314.e7 [PMID: 30107178]
  32. Cell Cycle. 2020 Jan;19(1):109-123 [PMID: 31749402]
  33. Cancers (Basel). 2021 May 17;13(10): [PMID: 34067731]
  34. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22288-22293 [PMID: 31611375]
  35. Annu Rev Biochem. 2016 Jun 2;85:375-404 [PMID: 27145840]
  36. Semin Oncol. 1997 Feb;24(1 Suppl 1):S1-65-S1-70 [PMID: 9045318]
  37. Science. 2012 Jun 15;336(6087):1440-4 [PMID: 22700930]
  38. Hum Mutat. 2014 Jun;35(6):672-88 [PMID: 24665023]
  39. Nat Rev Cancer. 2007 Mar;7(3):165-8 [PMID: 17332760]
  40. Genes Dev. 1996 Oct 1;10(19):2438-51 [PMID: 8843196]
  41. J Clin Oncol. 2021 May 10;39(14):1575-1583 [PMID: 33600210]
  42. Cancer Res. 2020 Dec 1;80(23):5231-5244 [PMID: 32873634]
  43. Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a000919 [PMID: 20516128]
  44. Clin Cancer Res. 2007 Jul 1;13(13):3789-95 [PMID: 17606709]
  45. Nat Commun. 2017 Mar 28;8:14844 [PMID: 28348409]
  46. Leukemia. 2020 Nov;34(11):2858-2874 [PMID: 32651541]
  47. Science. 2015 Jul 31;349(6247):1261669 [PMID: 26228159]
  48. Nat Rev Cancer. 2009 Oct;9(10):701-13 [PMID: 19693097]
  49. Cell. 2017 Sep 7;170(6):1062-1078 [PMID: 28886379]
  50. Cell Rep. 2013 May 30;3(5):1512-25 [PMID: 23665223]
  51. Trends Cell Biol. 2021 Apr;31(4):298-310 [PMID: 33518400]
  52. Nat Genet. 2003 Mar;33(3):396-400 [PMID: 12567186]
  53. J Mol Cell Biol. 2019 Jul 19;11(7):615-619 [PMID: 31283825]
  54. Nat Rev Cancer. 2018 Feb;18(2):89-102 [PMID: 29242642]
  55. Angew Chem Int Ed Engl. 2005 Aug 19;44(33):5247-51 [PMID: 16035029]
  56. Genes Dev. 2006 Jan 1;20(1):16-21 [PMID: 16391230]
  57. Haematologica. 2017 Sep;102(9):1558-1566 [PMID: 28572162]
  58. Mol Cell Biol. 2007 Aug;27(15):5479-85 [PMID: 17526734]
  59. Nat Genet. 2004 Jan;36(1):63-8 [PMID: 14702042]
  60. Genes Dev. 2012 Jun 15;26(12):1268-86 [PMID: 22713868]
  61. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15081-6 [PMID: 20696891]
  62. Nat Rev Cancer. 2013 Feb;13(2):83-96 [PMID: 23303139]
  63. Cell Rep. 2020 Jan 21;30(3):783-792.e5 [PMID: 31968253]
  64. Cancer Cell. 2009 May 5;15(5):376-88 [PMID: 19411067]
  65. Structure. 2015 Dec 1;23(12):2246-2255 [PMID: 26636255]
  66. Genes Dev. 1999 Oct 15;13(20):2670-7 [PMID: 10541553]
  67. EMBO J. 2019 Oct 15;38(20):e102096 [PMID: 31483066]
  68. Mol Cell. 2010 May 14;38(3):356-68 [PMID: 20471942]
  69. Nat Rev Clin Oncol. 2018 Jan;15(1):13-30 [PMID: 28948977]
  70. Nature. 2007 Feb 8;445(7128):656-60 [PMID: 17251933]
  71. Cell. 2006 Dec 29;127(7):1323-34 [PMID: 17182091]
  72. Curr Biol. 1994 Jan 1;4(1):1-7 [PMID: 7922305]
  73. Annu Rev Biochem. 2008;77:557-82 [PMID: 18410249]
  74. Mol Pharmacol. 2015 May;87(5):825-31 [PMID: 25710967]
  75. Nat Rev Cancer. 2001 Oct;1(1):68-76 [PMID: 11900253]
  76. Cancer Cell. 2014 Mar 17;25(3):304-17 [PMID: 24651012]
  77. Genes Dev. 2009 Apr 1;23(7):877-89 [PMID: 19339691]

Grants

  1. 111250/Deutsche Krebshilfe
  2. 80112623/Deutsche Krebshilfe
  3. 111444/Deutsche Krebshilfe
  4. 09 R/2018/José Carreras Leukämie-Stiftung
  5. TRR81/3 109546710 Project A10/Deutsche Forschungsgemeinschaft
  6. TI 1028/2-1/Deutsche Forschungsgemeinschaft
  7. STI 182/13-1/Deutsche Forschungsgemeinschaft
  8. GRK2573/Deutsche Forschungsgemeinschaft
  9. 031L0063/Bundesministerium für Bildung und Forschung
  10. 65-0004/Von-Behring-Röntgen-Stiftung
  11. 66-LV06/Von-Behring-Röntgen-Stiftung

MeSH Term

Apoptosis
Carcinogenesis
Humans
Mutant Proteins
Neoplasms
Tumor Suppressor Protein p53

Chemicals

Mutant Proteins
TP53 protein, human
Tumor Suppressor Protein p53

Word Cloud

Created with Highcharts 10.0.0p53canceractivityreactivationvariantE177Rcellevenpartialtherapeuticcellsexpressionp53-deficientleukemiaresponseregressiononemoleculartumormiceaddictedabsenceprovidingreactivatingcompoundsmutantelicitmodelslymphomavivotherapygeneproliferationgrowthobservationpromotesinduceschangeslevelBACKGROUND:ImpairedfunctioncentralfeaturesreductioncanincreaseriskmenperspectivenoteworthyoftenbecomerationaledevelopingtreatpatientsUnfortunatelymanycurrentlyundergoingpreclinicalclinicaltestingfailfullyreactivateproteinsraisingcrucialquestion:muchneededeffect?METHODS:geneticallymodelledusingknock-ininduciblereducedabilitybindtransactivatetargetgenesconsequentlycausesmoderatesusceptibilitygenerateddifferentsyngeneicallytransplantedautochthonousmouseacutemyeloidBTmanifestationactivatedanalyzedbioluminescencemagneticresonanceimagingcharacterizedvitroassayssenescencedifferentiationapoptosisclonogenicRESULTS:reportconceptuallyintriguingdenovoformationinhibitsviabilityimmuneinfiltrationtriggersintroducedlymphomasprovedlow-leveldetrimentalCONCLUSIONS:loss-of-functiontumorigenesissettinganotherunderlineshighlycontext-specificeffectsindividualmutantshighlightsexquisitesensitivitysmallrevealsimportantabsolutestudyencouragesongoingresearcheffortsdrugsgeneticproof-of-principleevidenceincompletemaysufficePartialsufficientinduceLeukemiaLymphomaMolecularMouseTumorsuppressor

Similar Articles

Cited By