Dual-function AzuCR RNA modulates carbon metabolism.

Medha Raina, Jordan J Aoyama, Shantanu Bhatt, Brian J Paul, Aixia Zhang, Taylor B Updegrove, Juan Miranda-Ríos, Gisela Storz
Author Information
  1. Medha Raina: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  2. Jordan J Aoyama: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  3. Shantanu Bhatt: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  4. Brian J Paul: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  5. Aixia Zhang: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  6. Taylor B Updegrove: Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892.
  7. Juan Miranda-Ríos: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  8. Gisela Storz: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430. ORCID

Abstract

SignificanceWhile most small, regulatory RNAs are thought to be "noncoding," a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete.

Keywords

References

  1. J Biol Chem. 2011 Sep 16;286(37):32464-74 [PMID: 21778229]
  2. J Bacteriol. 1984 Jul;159(1):63-70 [PMID: 6203892]
  3. Adv Genet. 2015;90:133-208 [PMID: 26296935]
  4. Microbiol Spectr. 2018 Mar;6(2): [PMID: 29573258]
  5. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  6. Mol Microbiol. 2004 Nov;54(4):1076-89 [PMID: 15522088]
  7. Front Microbiol. 2017 May 31;8:959 [PMID: 28620358]
  8. Mol Cell. 2020 Jan 16;77(2):411-425.e7 [PMID: 31761494]
  9. J Bacteriol. 2017 Jun 13;199(13): [PMID: 28439040]
  10. Biosystems. 2002 Mar-May;65(2-3):157-77 [PMID: 12069726]
  11. J Bacteriol. 2010 Jan;192(1):46-58 [PMID: 19734316]
  12. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3280-5 [PMID: 18296637]
  13. J Bacteriol. 2017 May 9;199(11): [PMID: 28289085]
  14. Science. 2009 Mar 6;323(5919):1354-7 [PMID: 19265022]
  15. EMBO J. 2021 Dec 15;40(24):e108542 [PMID: 34612526]
  16. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  17. Front Cell Infect Microbiol. 2014 Jul 15;4:91 [PMID: 25077072]
  18. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  19. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701 [PMID: 23010927]
  20. J Microbiol Methods. 2016 Dec;131:181-187 [PMID: 27794441]
  21. Biochem J. 2002 Jul 15;365(Pt 2):471-9 [PMID: 11955283]
  22. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  23. Annu Rev Microbiol. 2013;67:65-81 [PMID: 23701194]
  24. Science. 2010 Jul 30;329(5991):533-8 [PMID: 20671182]
  25. J Biol Chem. 1978 Feb 10;253(3):783-8 [PMID: 340460]
  26. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W124-9 [PMID: 24753424]
  27. Mol Microbiol. 2017 Jun;104(6):905-915 [PMID: 28370625]
  28. Curr Opin Microbiol. 2016 Apr;30:133-138 [PMID: 26907610]
  29. Can J Biochem. 1980 Oct;58(10):1172-8 [PMID: 6780164]
  30. Nat Rev Microbiol. 2018 Oct;16(10):601-615 [PMID: 29995832]
  31. Mol Microbiol. 2010 Mar;75(5):1215-31 [PMID: 20070527]
  32. EcoSal Plus. 2020 May;9(1): [PMID: 32385980]
  33. J Bacteriol. 2014 Jul;196(14):2598-606 [PMID: 24794565]
  34. Mol Cell. 2016 Sep 1;63(5):884-97 [PMID: 27588604]
  35. Nucleic Acids Res. 2017 Jul 3;45(W1):W435-W439 [PMID: 28472523]
  36. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9 [PMID: 18042713]
  37. Microbiol Spectr. 2018 Sep;6(5): [PMID: 30191807]

Grants

  1. ZIA HD001608/Intramural NIH HHS
  2. ZIA HD008855/Intramural NIH HHS

MeSH Term

Carbon
Culture Media
Escherichia coli
Escherichia coli Proteins
Galactose
Glycerol
Glycerolphosphate Dehydrogenase
Membrane Proteins
Protein Biosynthesis
RNA, Bacterial
RNA, Messenger

Chemicals

Culture Media
Escherichia coli Proteins
Membrane Proteins
RNA, Bacterial
RNA, Messenger
Carbon
Glycerolphosphate Dehydrogenase
Glycerol
Galactose

Word Cloud

Created with Highcharts 10.0.0smallregulatoryalsoproteinRNAdehydrogenasetwoSignificanceWhileRNAsthought"noncoding"foundencodedescribe164-nucleotideencodes28-aminoacidamphipathicinteractsaerobicglycerol-3-phosphateincreasesactivitybasepairsmRNAsreduceexpressioncodingbase-pairingsequencesoverlapfunctionscompeteDual-functionAzuCRmodulatescarbonmetabolismHfqProQcataboliterepressionglyceroldehdrogenasesRNA

Similar Articles

Cited By