Potential impact and cost-effectiveness of injectable next-generation rotavirus vaccines in 137 LMICs: a modelling study.

Frédéric Debellut, Clint Pecenka, William P Hausdorff, Andrew Clark
Author Information
  1. Frédéric Debellut: PATH, Center for Vaccine Innovation and Access, Geneva, Switzerland. ORCID
  2. Clint Pecenka: PATH, Center for Vaccine Innovation and Access, Seattle, WA, USA.
  3. William P Hausdorff: PATH, Center for Vaccine Innovation and Access, Washington, DC, USA. ORCID
  4. Andrew Clark: Faculty of Public Health and Policy, Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK.

Abstract

While current live, oral rotavirus vaccines (LORVs) are reducing severe diarrhea everywhere, their effectiveness is lower in high burden settings. Alternative approaches are in advanced stages of clinical development, including injectable next-generation rotavirus vaccine (iNGRV) candidates, which have the potential to better protect children, be combined with existing routine immunizations and be more affordable than current LORVs. In an effort to better understand the real public health value of iNGRVs and to help inform decisions by international agencies, funders, and vaccine manufacturers, we conducted an impact and cost-effectiveness analysis examining 20 rotavirus vaccine use cases. We evaluated several currently licensed LORVs, one neonatal oral NGRV (oNGRV), one iNGRV, and one iNGRV-DTP (iNGRV comprising part of a DTP-containing combination) over a ten-year timeframe in 137 low- and middle-income countries. The most promising use case identified was a high efficacy iNGRV-DTP, predicted to have the lowest vaccine program cost (US$1.4 billion), the highest vaccine benefit (750,000 rotavirus deaths averted, 13 million rotavirus hospital admissions averted, US$ 2.7 billion health-care cost averted), and most favorable cost-effectiveness (cost-saving). iNGRV-DTP vaccine remained the most affordable, safe, and cost-effective option even when it was assumed to have equivalent efficacy to the current LORVs. This study shows that while the development of iNGRVs with superior efficacy to currently licensed LORVs would be ideal, iNGRVs with similar efficacy to LORVs would offer substantial public health value. It also highlights the economic value of accelerating the development of DTP-based combination vaccines that include iNGRV to provide rotavirus protection.

Keywords

References

  1. Lancet Glob Health. 2021 Jul;9(7):e942-e956 [PMID: 33891885]
  2. Hum Vaccin Immunother. 2018;14(11):2760-2767 [PMID: 29913110]
  3. Clin Microbiol Infect. 2016 Dec 1;22 Suppl 5:S128-S135 [PMID: 27129416]
  4. Vaccine. 2017 Jun 8;35(26):3364-3386 [PMID: 28504193]
  5. Lancet Glob Health. 2019 Nov;7(11):e1541-e1552 [PMID: 31607466]
  6. Lancet Glob Health. 2019 Dec;7(12):e1664-e1674 [PMID: 31708147]
  7. Lancet Infect Dis. 2020 Jul;20(7):851-863 [PMID: 32251641]
  8. J Infect Dis. 2018 Mar 5;217(6):861-868 [PMID: 29514306]
  9. J Infect Dis. 2020 Oct 13;222(10):1731-1739 [PMID: 32095831]
  10. PLoS One. 2020 Feb 5;15(2):e0228506 [PMID: 32023295]
  11. Vaccine. 2018 Dec 14;36(51):7769-7774 [PMID: 29107346]
  12. Vaccine. 2020 Dec 14;38(52):8247-8254 [PMID: 33234304]
  13. Vaccine. 2019 Aug 14;37(35):4987-4995 [PMID: 31326252]
  14. Hum Vaccin Immunother. 2019;15(6):1237-1250 [PMID: 30215578]
  15. N Engl J Med. 2018 Feb 22;378(8):719-730 [PMID: 29466164]
  16. PLoS One. 2017 Nov 3;12(11):e0187446 [PMID: 29099848]
  17. Lancet Infect Dis. 2017 Sep;17(9):909-948 [PMID: 28579426]
  18. Lancet. 2009 May 2;373(9674):1543-9 [PMID: 19303633]
  19. Vaccine. 2022 Jan 21;40(2):370-379 [PMID: 34863614]
  20. Vaccine. 2019 Jan 21;37(4):623-630 [PMID: 30587430]
  21. Future Microbiol. 2018 Jan;13:97-118 [PMID: 29218997]
  22. Vaccine. 2017 Oct 13;35(43):5835-5841 [PMID: 28941619]
  23. Vaccine. 2016 Jul 12;34(32):3684-9 [PMID: 27286641]
  24. N Engl J Med. 2014 Feb 6;370(6):503-12 [PMID: 24422676]
  25. Lancet Infect Dis. 2019 Jul;19(7):717-727 [PMID: 31178289]
  26. Vaccine. 2019 Feb 4;37(6):798-807 [PMID: 30639458]
  27. Vaccine. 2020 Feb 5;38(6):1352-1362 [PMID: 31870571]
  28. Open Forum Infect Dis. 2019 Mar 08;6(4):ofz117 [PMID: 31049363]
  29. Vaccine. 2019 Nov 28;37(50):7328-7335 [PMID: 28396207]
  30. BMC Public Health. 2020 May 5;20(1):619 [PMID: 32370763]
  31. Hum Vaccin Immunother. 2019;15(6):1215-1227 [PMID: 30735087]
  32. Hum Vaccin Immunother. 2021 Jun 3;17(6):1787-1802 [PMID: 33327868]
  33. Vaccine. 2020 Jul 6;38(32):5049-5059 [PMID: 32522415]
  34. Clin Infect Dis. 2020 Apr 10;70(8):1606-1612 [PMID: 31125061]
  35. Lancet Glob Health. 2019 Jul;7(7):e893-e903 [PMID: 31200889]

MeSH Term

Child
Cost-Benefit Analysis
Developing Countries
Humans
Immunization Programs
Infant
Infant, Newborn
Rotavirus
Rotavirus Infections
Rotavirus Vaccines
Vaccination

Chemicals

Rotavirus Vaccines

Word Cloud

Created with Highcharts 10.0.0rotavirusLORVsvaccinevaccinesiNGRVcost-effectivenessefficacycurrentoraldevelopmentnext-generationvalueiNGRVsoneiNGRV-DTPavertedhighinjectablebetteraffordablepublichealthimpactusecurrentlylicensedcombination137low-middle-incomecountriescostbillionstudylivereducingseverediarrheaeverywhereeffectivenesslowerburdensettingsAlternativeapproachesadvancedstagesclinicalincludingcandidatespotentialprotectchildrencombinedexistingroutineimmunizationseffortunderstandrealhelpinformdecisionsinternationalagenciesfundersmanufacturersconductedanalysisexamining20casesevaluatedseveralneonatalNGRVoNGRVcomprisingpartDTP-containingten-yeartimeframepromisingcaseidentifiedpredictedlowestprogramUS$14highestbenefit750000deaths13millionhospitaladmissionsUS$27health-carefavorablecost-savingremainedsafecost-effectiveoptionevenassumedequivalentshowssuperioridealsimilaroffersubstantialalsohighlightseconomicacceleratingDTP-basedincludeprovideprotectionPotentialLMICs:modellingDALYsLive

Similar Articles

Cited By