Comparative genomics of plant pathogenic Diaporthe species and transcriptomics of Diaporthe caulivora during host infection reveal insights into pathogenic strategies of the genus.

Eilyn Mena, Silvia Garaycochea, Silvina Stewart, Marcos Montesano, Inés Ponce De León
Author Information
  1. Eilyn Mena: Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
  2. Silvia Garaycochea: Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Las Brujas, Ruta 48 Km 10, Canelones, Uruguay.
  3. Silvina Stewart: Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano, Estación Experimental La Estanzuela, Ruta 50 km 11, 70000, Colonia, Uruguay.
  4. Marcos Montesano: Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
  5. Inés Ponce De León: Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay. iponce@iibce.edu.uy.

Abstract

BACKGROUND: Diaporthe caulivora is a fungal pathogen causing stem canker in soybean worldwide. The generation of genomic and transcriptomic information of this ascomycete, together with a comparative genomic approach with other pathogens of this genus, will contribute to get insights into the molecular basis of pathogenicity strategies used by D. caulivora and other Diaporthe species.
RESULTS: In the present work, the nuclear genome of D. caulivora isolate (D57) was resolved, and a comprehensive annotation based on gene expression and genomic analysis is provided. Diaporthe caulivora D57 has an estimated size of 57,86 Mb and contains 18,385 predicted protein-coding genes, from which 1501 encode predicted secreted proteins. A large array of D. caulivora genes encoding secreted pathogenicity-related proteins was identified, including carbohydrate-active enzymes (CAZymes), necrosis-inducing proteins, oxidoreductases, proteases and effector candidates. Comparative genomics with other plant pathogenic Diaporthe species revealed a core secretome present in all Diaporthe species as well as Diaporthe-specific and D. caulivora-specific secreted proteins. Transcriptional profiling during early soybean infection stages showed differential expression of 2659 D. caulivora genes. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that host infection strategies depends on plant cell wall degradation and modification, detoxification of compounds, transporter activities and toxin production. Increased expression of effectors candidates suggests that D. caulivora pathogenicity also rely on plant defense evasion. A high proportion of the upregulated genes correspond to the core secretome and are represented in the pathogen-host interaction (PHI) database, which is consistent with their potential roles in pathogenic strategies of the genus Diaporthe.
CONCLUSIONS: Our findings give novel and relevant insights into the molecular traits involved in pathogenicity of D. caulivora towards soybean plants. Some of these traits are in common with other Diaporthe pathogens with different host specificity, while others are species-specific. Our analyses also highlight the importance to have a deeper understanding of pathogenicity functions among Diaporthe pathogens and their interference with plant defense activation.

Keywords

References

  1. Genome Biol. 2004;5(2):R12 [PMID: 14759262]
  2. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  3. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  4. Biochem Biophys Res Commun. 2007 Feb 9;353(2):412-7 [PMID: 17188234]
  5. Microbiol Resour Announc. 2020 Sep 3;9(36): [PMID: 32883789]
  6. Bioinformatics. 2015 Oct 15;31(20):3350-2 [PMID: 26099265]
  7. Genom Data. 2016 Feb 02;7:262-3 [PMID: 26981423]
  8. PLoS One. 2020 Apr 2;15(4):e0231141 [PMID: 32240251]
  9. Int J Plant Genomics. 2008;2008:619832 [PMID: 18483572]
  10. Phytopathology. 2021 May;111(5):779-783 [PMID: 33315476]
  11. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 [PMID: 16845043]
  12. Fungal Biol. 2015 May;119(5):383-407 [PMID: 25937066]
  13. Mol Plant Microbe Interact. 2001 May;14(5):653-62 [PMID: 11332729]
  14. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  15. Mol Plant Microbe Interact. 2011 Dec;24(12):1482-91 [PMID: 22066900]
  16. Annu Rev Phytopathol. 2016 Aug 4;54:419-41 [PMID: 27359369]
  17. Nucleic Acids Res. 2008 Jan;36(Database issue):D572-6 [PMID: 17942425]
  18. J Biol Chem. 1997 Jan 10;272(2):804-13 [PMID: 8995367]
  19. BMC Genomics. 2018 Jan 6;19(1):27 [PMID: 29306326]
  20. Fungal Genet Biol. 2018 Jan;110:1-9 [PMID: 29225185]
  21. Proteins. 1993 May;16(1):64-78 [PMID: 8497485]
  22. BMC Microbiol. 2016 Jul 12;16(1):147 [PMID: 27405320]
  23. Curr Genet. 2016 Aug;62(3):533-45 [PMID: 26879194]
  24. Bioinformatics. 2017 Sep 15;33(18):2936-2937 [PMID: 28582481]
  25. Nat Methods. 2011 Sep 29;8(10):785-6 [PMID: 21959131]
  26. Front Plant Sci. 2018 Aug 08;9:980 [PMID: 30135691]
  27. Mol Plant Microbe Interact. 2021 Jul;34(7):845-847 [PMID: 33761784]
  28. PLoS Pathog. 2009 Jun;5(6):e1000486 [PMID: 19557154]
  29. Persoonia. 2014 Jun;32:83-101 [PMID: 25264384]
  30. PLoS One. 2017 Jan 17;12(1):e0169963 [PMID: 28095498]
  31. Mol Gen Genet. 1994 Jun 3;243(5):506-14 [PMID: 8208242]
  32. Genom Data. 2016 Nov 11;10:151-152 [PMID: 27872817]
  33. PLoS One. 2012;7(12):e49904 [PMID: 23236356]
  34. Front Plant Sci. 2017 Oct 31;8:1880 [PMID: 29163605]
  35. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  36. Mol Plant Pathol. 2018 Sep;19(9):2094-2110 [PMID: 29569316]
  37. Genome Res. 2008 Jan;18(1):188-96 [PMID: 18025269]
  38. BMC Genomics. 2017 Sep 5;18(1):688 [PMID: 28870170]
  39. Front Plant Sci. 2020 Jan 23;10:1733 [PMID: 32117332]
  40. Persoonia. 2011 Dec;27:9-19 [PMID: 22403474]
  41. Microbiol Mol Biol Rev. 1999 Sep;63(3):708-24 [PMID: 10477313]
  42. Front Plant Sci. 2021 Apr 30;12:651716 [PMID: 33995447]
  43. BMC Genomics. 2015 Jun 19;16:469 [PMID: 26084502]
  44. Plant Dis. 2015 Jan;99(1):160 [PMID: 30699768]
  45. MycoKeys. 2018 Sep 17;(39):97-149 [PMID: 30271260]
  46. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  47. Science. 1995 Jan 20;267(5196):371-4 [PMID: 7824933]
  48. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D456-8 [PMID: 16381910]
  49. Persoonia. 2011 Dec;27:80-9 [PMID: 22403478]
  50. Genomics. 2020 Sep;112(5):3751-3761 [PMID: 32371024]
  51. Toxins (Basel). 2020 Feb 28;12(3): [PMID: 32121226]
  52. BMC Bioinformatics. 2019 Jun 13;20(1):331 [PMID: 31195976]
  53. Phytopathology. 2016 Oct;106(10):1068-1070 [PMID: 27482626]
  54. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  55. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  56. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  57. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 [PMID: 17483518]
  58. Plant Dis. 2019 Apr;103(4):677-684 [PMID: 30742552]
  59. Bioinformatics. 2001 Sep;17(9):847-8 [PMID: 11590104]
  60. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 [PMID: 22645317]
  61. New Phytol. 2018 Mar;217(4):1764-1778 [PMID: 29243824]
  62. Mol Plant Microbe Interact. 1995 May-Jun;8(3):388-97 [PMID: 7655061]
  63. BMC Bioinformatics. 2011 Apr 18;12:102 [PMID: 21501495]
  64. Stud Mycol. 2019 Mar;92:47-133 [PMID: 29997401]
  65. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  66. Phytopathology. 2003 Feb;93(2):136-46 [PMID: 18943127]
  67. Front Microbiol. 2016 Apr 27;7:600 [PMID: 27199930]
  68. BMC Genomics. 2013 Apr 23;14:274 [PMID: 23617724]
  69. Mol Plant Microbe Interact. 2021 Feb;34(2):218-221 [PMID: 33090063]
  70. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5 [PMID: 16845026]
  71. New Phytol. 2016 Apr;210(2):743-61 [PMID: 26680733]
  72. Genome Announc. 2016 Jun 02;4(3): [PMID: 27257198]
  73. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  74. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  75. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  76. Bioinformatics. 2016 Mar 1;32(5):767-9 [PMID: 26559507]
  77. Plant Physiol. 2002 Nov;130(3):1288-97 [PMID: 12427995]
  78. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  79. Mol Gen Genet. 1995 May 10;247(3):282-94 [PMID: 7770033]
  80. BMC Genomics. 2019 Oct 31;20(1):798 [PMID: 31672122]
  81. Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
  82. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  83. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  84. Plant Dis. 2021 Oct;105(10):3279-3281 [PMID: 33754866]
  85. Genome Announc. 2015 Feb 19;3(1): [PMID: 25700395]

MeSH Term

Ascomycota
Genomics
Plant Diseases
Transcriptome

Word Cloud

Created with Highcharts 10.0.0DiaporthecaulivoraDgenesplantpathogenspathogenicitystrategiesspeciesproteinspathogenicsoybeangenomicgenusinsightsexpressionsecretedinfectionhostmolecularpresentD57geneanalysispredictedcandidatesComparativegenomicsrevealedcoresecretomeupregulatedalsodefensetraitsBACKGROUND:fungalpathogencausingstemcankerworldwidegenerationtranscriptomicinformationascomycetetogethercomparativeapproachwillcontributegetbasisusedRESULTS:worknucleargenomeisolateresolvedcomprehensiveannotationbasedprovidedestimatedsize5786 Mbcontains18385protein-coding1501encodelargearrayencodingpathogenicity-relatedidentifiedincludingcarbohydrate-activeenzymesCAZymesnecrosis-inducingoxidoreductasesproteaseseffectorwellDiaporthe-specificcaulivora-specificTranscriptionalprofilingearlystagesshoweddifferential2659ExpressionpatternsontologyenrichmentdependscellwalldegradationmodificationdetoxificationcompoundstransporteractivitiestoxinproductionIncreasedeffectorssuggestsrelyevasionhighproportioncorrespondrepresentedpathogen-hostinteractionPHIdatabaseconsistentpotentialrolesCONCLUSIONS:findingsgivenovelrelevantinvolvedtowardsplantscommondifferentspecificityothersspecies-specificanalyseshighlightimportancedeeperunderstandingfunctionsamonginterferenceactivationtranscriptomicsrevealEffectorsGenomesPathogenicityfactorsRNAseqSecretomeSoybean

Similar Articles

Cited By