Extraction of integral membrane proteins with poly(styrene-co-maleic acid) provides a promising alternative to detergent extraction. A major advantage of extraction using copolymers rather than detergent is the retention of the lipid bilayer around the proteins. Here we report the first functional investigation of the mammalian insulin receptor which was extracted from cell membranes using poly(styrene-co-maleic acid). We found that the copolymer efficiently extracted the insulin receptor from 3T3L1 fibroblast membranes. Surprisingly, activation of the insulin receptor and proximal downstream signalling was detected upon copolymer extraction even in the absence of insulin stimulation. Insulin receptor and IRS1 phosphorylations were above levels measured in the control extracts made with detergents. However, more distal signalling events in the insulin signalling cascade, such as the phosphorylation of Akt were not observed. Following copolymer extraction, in vitro addition of insulin had no further effect on insulin receptor or IRS1 phosphorylation. Therefore, under our experimental conditions, the insulin receptor is not functionally responsive to insulin. This study is the first to investigate receptor tyrosine kinases extracted from mammalian cells using a styrene-maleic acid copolymer and highlights the importance of thorough functional characterisation when using this method of protein extraction.
References
Dorr, J. M. et al. The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 45, 3–21 (2016).
[PMID: 26639665]
Overduin, M. & Esmaili, M. Memtein: the fundamental unit of membrane-protein structure and function. Chem. Phys. Lipids 218, 73–84 (2019).
[PMID: 30508515]
Arenas, R. C., Klingler, J., Vargas, C. & Keller, S. Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers. Nanoscale 8, 15016–15026 (2016).
[DOI: 10.1039/C6NR02089E]
Jamshad, M. et al. Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res. 8, 774–789 (2015).
[PMID: 31031888]
Jamshad, M. et al. Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem. Soc. Trans. 39, 813–818 (2011).
[PMID: 21599653]
Esmaili, M. & Overduin, M. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers. Biochim. Biophys. Acta Biomembr. 1860, 257–263 (2018).
[PMID: 29056560]
Gulati, S. et al. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 461, 269–278 (2014).
[PMID: 24758594]
Knowles, T. J. et al. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485 (2009).
[PMID: 19449872]
Orwick-Rydmark, M. et al. Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett. 12, 4687–4692 (2012).
[PMID: 22827450]
Prabudiansyah, I., Kusters, I., Caforio, A. & Driessen, A. J. Characterization of the annular lipid shell of the Sec translocon. Biochim. Biophys. Acta 1848, 2050–2056 (2015).
[PMID: 26129641]
Swainsbury, D. J., Scheidelaar, S., van Grondelle, R., Killian, J. A. & Jones, M. R. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew. Chem. Int. Ed. Engl. 53, 11803–11807 (2014).
[PMID: 25212490]
Vargas, C., Arenas, R. C., Frotscher, E. & Keller, S. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale 7, 20685–20696 (2015).
[PMID: 26599076]
Cunningham, R. D. et al. Iterative RAFT-mediated copolymerization of styrene and maleic anhydride toward sequence- and length-controlled copolymers and their applications for solubilizing lipid membranes. Biomacromology 21, 3287–3300 (2020).
[DOI: 10.1021/acs.biomac.0c00736]
Hall, S. C. L. et al. Influence of poly(styrene- co-maleic acid) copolymer structure on the properties and self-assembly of SMALP nanodiscs. Biomacromology 19, 761–772 (2018).
[DOI: 10.1021/acs.biomac.7b01539]
Fiori, M. C., Jiang, Y., Altenberg, G. A. & Liang, H. Polymer-encased nanodiscs with improved buffer compatibility. Sci. Rep. 7, 7432 (2017).
[PMID: 28785023]
Morrison, K. A. et al. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure. Biochem. J. 473, 4349–4360 (2016).
[PMID: 27694389]
Oluwole, A. O. et al. Formation of lipid-bilayer nanodiscs by diisobutylene/maleic acid (DIBMA) copolymer. Langmuir 33, 14378–14388 (2017).
[PMID: 29160078]
Ravula, T. et al. Effect of polymer charge on functional reconstitution of membrane proteins in polymer nanodiscs. Chem. Commun. (Camb) 54, 9615–9618 (2018).
[DOI: 10.1039/C8CC04184A]
Grethen, A., Oluwole, A. O., Danielczak, B., Vargas, C. & Keller, S. Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer. Sci. Rep. 7, 11517 (2017).
[PMID: 28912575]
Dorr, J. M. et al. Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc. Natl. Acad. Sci. U. S. A. 111, 18607–18612 (2014).
[PMID: 25512535]
Rehan, S., Paavilainen, V. O. & Jaakola, V. P. Functional reconstitution of human equilibrative nucleoside transporter-1 into styrene maleic acid co-polymer lipid particles. Biochim. Biophys. Acta Biomembr. 1859, 1059–1065 (2017).
[PMID: 28254415]
Jamshad, M. et al. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep 35 (2015).
Logez, C. et al. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. Biochemistry 55, 38–48 (2016).
[PMID: 26701065]
Wheatley, M. et al. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential. Biochem. Soc. Trans. 44, 619–623 (2016).
[PMID: 27068979]
Lavington, S. & Watts, A. Detergent-free solubilisation and purification of a G protein coupled receptor using a polymethacrylate polymer. Biochim. Biophys. Acta Biomembr. 1863, 183441 (2021).
[PMID: 32810489]
Juarez, J. F. B. et al. Detergent-free extraction of a functional low-expressing GPCR from a human cell line. Biochim. Biophys. Acta Biomembr. 1862, 183152 (2020).
[DOI: 10.1016/j.bbamem.2019.183152]
Adams, T. E., Epa, V. C., Garrett, T. P. & Ward, C. W. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol. Life Sci. 57, 1050–1093 (2000).
[PMID: 10961344]
Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).
[PMID: 2158859]
Shepherd, P. R., Withers, D. J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333(Pt 3), 471–490 (1998).
[PMID: 9677303]
Gutmann, T., Kim, K. H., Grzybek, M., Walz, T. & Coskun, U. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J. Cell Biol. 217, 1643–1649 (2018).
[PMID: 29453311]
Gustavsson, J. et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961–1971 (1999).
[PMID: 10544179]
Pardo, J. J. D. et al. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. Eur. Biophys. J. 46, 91–101 (2017).
[DOI: 10.1007/s00249-016-1181-7]
Dorr, J. M., van Coevorden-Hameete, M. H., Hoogenraad, C. C. & Killian, J. A. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy. Biochim. Biophys. Acta Biomembr. 1859, 2155–2160 (2017).
[PMID: 28847501]
Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7, 261–269 (1997).
[PMID: 9094314]
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).
[PMID: 15718470]
Barniol-Xicota, M. & Verhelst, S. H. L. Stable and functional rhomboid proteases in lipid nanodiscs by using diisobutylene/maleic acid copolymers. J. Am. Chem. Soc. 140, 14557–14561 (2018).
[PMID: 30347979]
Hall, S. C. L. et al. An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. Nanoscale 10, 10609–10619 (2018).
[PMID: 29845165]
Hardin, N. Z., Ravula, T., Mauro, G. D. & Ramamoorthy, A. Hydrophobic functionalization of polyacrylic acid as a versatile platform for the development of polymer lipid nanodisks. Small 15, e1804813 (2019).
[PMID: 30667600]
Ravula, T., Ramadugu, S. K., Di Mauro, G. & Ramamoorthy, A. Bioinspired, size-tunable self-assembly of polymer-lipid bilayer nanodiscs. Angew. Chem. Int. Ed. Engl. 56, 11466–11470 (2017).
[PMID: 28714233]
Sahoo, B. R., Genjo, T., Moharana, K. C. & Ramamoorthy, A. Self-assembly of polymer-encased lipid nanodiscs and membrane protein reconstitution. J. Phys. Chem. B 123, 4562–4570 (2019).
[PMID: 31050900]
Tanaka, M. et al. Preparation and characterization of reconstituted lipid-synthetic polymer discoidal particles. Langmuir 31, 12719–12726 (2015).
[PMID: 26531224]
Yasuhara, K. et al. Spontaneous lipid nanodisc fomation by amphiphilic polymethacrylate copolymers. J. Am. Chem. Soc. 139, 18657–18663 (2017).
[PMID: 29171274]
Frost, S. C. & Lane, M. D. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J. Biol. Chem. 260, 2646–2652 (1985).
[PMID: 3882699]
Koumanov, F. et al. Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes. Diabetologia 58, 1877–1886 (2015).
[PMID: 26024738]