A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution.

Zachary D Root, Cara Allen, Claire Gould, Margaux Brewer, David Jandzik, Daniel M Medeiros
Author Information
  1. Zachary D Root: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.
  2. Cara Allen: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.
  3. Claire Gould: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.
  4. Margaux Brewer: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.
  5. David Jandzik: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.
  6. Daniel M Medeiros: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.

Abstract

Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in Lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the Lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in Lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the clusters, a phenomenon also seen in gnathostomes. While the Lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval Lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea Lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea Lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.

Keywords

References

  1. PLoS One. 2011;6(7):e22474 [PMID: 21799866]
  2. Nature. 2019 Oct;574(7780):675-678 [PMID: 31645763]
  3. Matrix Biol. 2003 Mar;22(1):3-14 [PMID: 12714037]
  4. J Exp Zool B Mol Dev Evol. 2008 Nov 15;310(7):596-607 [PMID: 18702077]
  5. J Musculoskelet Neuronal Interact. 2005 Mar;5(1):22-34 [PMID: 15788868]
  6. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1852-6 [PMID: 9050868]
  7. Int J Dev Biol. 2004;48(2-3):217-31 [PMID: 15272388]
  8. Dev Dyn. 2007 Sep;236(9):2410-20 [PMID: 17477393]
  9. Matrix Biol. 2020 Jan;85-86:47-67 [PMID: 31655293]
  10. Cell Tissue Res. 2016 Feb;363(2):541-54 [PMID: 26246399]
  11. Mol Phylogenet Evol. 2019 Dec;141:106632 [PMID: 31560986]
  12. J Biol Chem. 1993 Jan 15;268(2):1440-7 [PMID: 7678258]
  13. PLoS One. 2009 Dec 29;4(12):e8481 [PMID: 20041163]
  14. Gene. 2019 Jun 15;701:9-14 [PMID: 30898708]
  15. PLoS One. 2014 Mar 07;9(3):e90568 [PMID: 24608635]
  16. Development. 2001 May;128(10):1731-44 [PMID: 11311155]
  17. Dev Dyn. 1995 Sep;204(1):41-7 [PMID: 8563024]
  18. Dev Biol. 2011 Feb 1;350(1):217-27 [PMID: 21035440]
  19. Izv Akad Nauk Ser Biol. 2006 Jan-Feb;(1):38-43 [PMID: 16521537]
  20. Biochim Biophys Acta Mol Cell Res. 2019 Nov;1866(11):118472 [PMID: 30954569]
  21. Nucleic Acids Res. 2007 Jan;35(Database issue):D5-12 [PMID: 17170002]
  22. Br Poult Sci. 2003 Jul;44(3):374-9 [PMID: 12964620]
  23. Biology (Basel). 2014 Dec 03;3(4):846-65 [PMID: 25478994]
  24. Dev Dyn. 2006 Dec;235(12):3295-305 [PMID: 17029294]
  25. Physiol Genomics. 2010 Aug;42(3):406-19 [PMID: 20484158]
  26. Matrix Biol. 2018 Sep;70:72-83 [PMID: 29551664]
  27. J Clin Invest. 2013 Aug;123(8):3564-76 [PMID: 23863709]
  28. Development. 2001 May;128(10):1745-55 [PMID: 11311156]
  29. Dev Dyn. 2008 May;237(5):1477-89 [PMID: 18425852]
  30. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2386-90 [PMID: 18252826]
  31. BMC Evol Biol. 2012 Mar 05;12:27 [PMID: 22390748]
  32. BMC Genomics. 2020 Apr 29;21(1):327 [PMID: 32349667]
  33. Sci Rep. 2016 Feb 15;6:21540 [PMID: 26876635]
  34. Eur J Appl Physiol Occup Physiol. 1984;52(2):235-42 [PMID: 6538840]
  35. Am J Anat. 1984 Apr;169(4):407-24 [PMID: 6731333]
  36. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16829-33 [PMID: 17077149]
  37. Dev Dyn. 2005 Dec;234(4):824-34 [PMID: 16252276]
  38. Mol Biol Evol. 1997 Aug;14(8):843-53 [PMID: 9254922]
  39. Cold Spring Harb Protoc. 2009 Jan;2009(1):pdb.prot5123 [PMID: 20147018]
  40. Anat Rec. 1977 Mar;187(3):383-404 [PMID: 851239]
  41. Cell Rep. 2016 Jan 26;14(3):632-647 [PMID: 26774488]
  42. Gene Expr Patterns. 2015 Sep-Nov;19(1-2):60-9 [PMID: 26256560]
  43. Development. 2019 Jul 19;146(14): [PMID: 31253635]
  44. Cell Tissue Res. 2007 Feb;327(2):323-32 [PMID: 17024418]
  45. Differentiation. 2019 Mar - Apr;106:35-41 [PMID: 30852471]
  46. Nat Genet. 2013 Apr;45(4):415-21, 421e1-2 [PMID: 23435085]
  47. Dev Biol. 2021 Aug;476:282-293 [PMID: 33887266]
  48. Curr Mol Med. 2018;18(7):448-458 [PMID: 30539698]
  49. Dev Biol. 2003 Dec 1;264(1):64-76 [PMID: 14623232]
  50. Dev Biol. 2010 Feb 15;338(2):117-26 [PMID: 19896938]
  51. Zoolog Sci. 2006 Dec;23(12):1053-64 [PMID: 17261918]
  52. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17262-7 [PMID: 20855630]
  53. J Biol Chem. 2008 Oct 3;283(40):27154-64 [PMID: 18644788]
  54. Science. 2020 Jun 26;368(6498): [PMID: 32586993]
  55. J Biol Chem. 2000 Mar 24;275(12):8749-59 [PMID: 10722718]
  56. Development. 2010 Sep 1;137(17):2807-17 [PMID: 20699295]
  57. Cell. 1995 Feb 10;80(3):423-30 [PMID: 7859283]
  58. Bioinformatics. 2005 May 1;21(9):2104-5 [PMID: 15647292]
  59. Cell Tissue Res. 2008 Apr;332(1):111-22 [PMID: 18239943]
  60. Zoolog Sci. 2008 Oct;25(10):960-8 [PMID: 19267631]
  61. Evol Dev. 2006 Jul-Aug;8(4):370-7 [PMID: 16805901]
  62. Curr Biol. 2001 Sep 18;11(18):1432-8 [PMID: 11566102]
  63. Matrix Biol. 2010 May;29(4):261-75 [PMID: 20102740]
  64. Proteins. 2000 Feb 1;38(2):210-25 [PMID: 10656267]
  65. Genome Res. 2015 Aug;25(8):1081-90 [PMID: 26048246]
  66. J Mol Biol. 1984 Nov 5;179(3):391-413 [PMID: 6512857]
  67. Dev Biol. 2009 Apr 15;328(2):392-402 [PMID: 19389348]
  68. Philos Trans R Soc Lond B Biol Sci. 2018 Sep 24;373(1759): [PMID: 30249781]
  69. Sci Rep. 2016 Sep 28;6:34282 [PMID: 27677704]
  70. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  71. Nucleic Acids Res. 2020 Jan 8;48(D1):D682-D688 [PMID: 31691826]
  72. Matrix Biol. 2009 Oct;28(8):490-502 [PMID: 19638309]
  73. Cytoskeleton (Hoboken). 2012 May;69(5):324-35 [PMID: 22422726]
  74. Nature. 2015 Feb 26;518(7540):534-7 [PMID: 25487155]
  75. Development. 2012 Aug;139(16):2988-98 [PMID: 22764049]
  76. Nature. 2020 Sep;585(7826):563-568 [PMID: 32939088]
  77. J Anat. 1961 Oct;95:575-85 [PMID: 14038306]
  78. J Exp Zool B Mol Dev Evol. 2010 Mar 15;314(2):157-65 [PMID: 19750486]
  79. Development. 2004 Jul;131(14):3249-62 [PMID: 15201218]
  80. Int J Biol Sci. 2012;8(10):1310-22 [PMID: 23139630]
  81. Dev Biol. 2005 Jun 1;282(1):14-26 [PMID: 15936326]
  82. Front Genet. 2015 Sep 15;6:283 [PMID: 26442101]
  83. J Biol Chem. 2003 Oct 31;278(44):43236-44 [PMID: 12874293]
  84. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  85. Development. 2014 May;141(10):2035-45 [PMID: 24803652]
  86. Nature. 2012 Jul 12;487(7406):231-4 [PMID: 22763458]
  87. J Biol Chem. 2002 Feb 8;277(6):4223-31 [PMID: 11704682]
  88. Tissue Cell. 1981;13(4):681-90 [PMID: 7330851]
  89. Clujul Med. 2015;88(1):15-22 [PMID: 26528042]
  90. Nature. 2007 Sep 6;449(7158):54-61 [PMID: 17805289]
  91. J Exp Zool B Mol Dev Evol. 2004 Mar 15;302(2):121-33 [PMID: 15054856]
  92. Matrix Biol. 2005 Jun;24(4):283-94 [PMID: 15908193]
  93. Dev Cell. 2009 Jun;16(6):810-21 [PMID: 19531352]
  94. Osteoarthritis Cartilage. 2012 Feb;20(2):162-71 [PMID: 22209871]
  95. Int J Mol Sci. 2010 Jan 28;11(2):407-26 [PMID: 20386646]
  96. J Exp Zool B Mol Dev Evol. 2011 Jul 15;316(5):339-46 [PMID: 21351246]
  97. Dev Dyn. 2006 Nov;235(11):3132-43 [PMID: 16960856]
  98. Nat Ecol Evol. 2020 Jun;4(6):820-830 [PMID: 32313176]
  99. Development. 2008 Feb;135(4):647-57 [PMID: 18184728]
  100. Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1013-37 [PMID: 12485690]
  101. Gene Expr Patterns. 2010 Oct-Dec;10(7-8):315-22 [PMID: 20647059]
  102. J Biol Chem. 2004 Nov 12;279(46):47711-9 [PMID: 15358765]
  103. Matrix Biol. 2005 May;24(3):177-84 [PMID: 15922909]
  104. Development. 2014 Feb;141(3):629-38 [PMID: 24449839]
  105. Mol Cell Biochem. 1990 Jul 17;96(1):1-14 [PMID: 2146489]
  106. Matrix Biol. 2020 Dec;94:77-94 [PMID: 32950601]
  107. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3180-5 [PMID: 16492784]
  108. Int J Biol Sci. 2013 Sep 05;9(9):872-86 [PMID: 24155663]
  109. FEBS Lett. 1977 Jul 15;79(2):248-52 [PMID: 330230]
  110. Dis Model Mech. 2010 May-Jun;3(5-6):354-65 [PMID: 20335443]
  111. BMC Genomics. 2013 Mar 14;14:173 [PMID: 23497127]
  112. Dev Biol. 2008 Sep 1;321(1):162-74 [PMID: 18602913]
  113. Nature. 2016 Oct 19;538(7625):336-343 [PMID: 27762356]
  114. Nat Rev Genet. 2009 Oct;10(10):725-32 [PMID: 19652647]
  115. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8720-4 [PMID: 21555584]
  116. Zoolog Sci. 2008 Oct;25(10):982-9 [PMID: 19267634]
  117. Semin Cell Dev Biol. 2013 Feb;24(2):119-27 [PMID: 23291292]
  118. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  119. J Biol Chem. 2007 Jun 15;282(24):17665-75 [PMID: 17430895]
  120. EMBO J. 1997 Mar 3;16(5):908-16 [PMID: 9118952]
  121. J Morphol. 2020 Feb;281(2):160-169 [PMID: 31840868]
  122. Trends Genet. 2005 Oct;21(10):559-67 [PMID: 16099069]
  123. Anat Embryol (Berl). 1996 May;193(5):419-26 [PMID: 8729960]
  124. J Biol Chem. 2011 Jun 10;286(23):20455-65 [PMID: 21467034]
  125. Dev Cell. 2009 Jun;16(6):822-32 [PMID: 19531353]
  126. J Biol Chem. 1995 Feb 3;270(5):2372-8 [PMID: 7836472]
  127. Bioinformatics. 2006 Nov 15;22(22):2715-21 [PMID: 16954142]
  128. Nature. 2016 May 5;533(7601):86-9 [PMID: 27111511]

Word Cloud

Created with Highcharts 10.0.0fibrillarlampreycartilagecollagenscollagengenesvertebratemusculoskeletalgenevertebratesgnathostomestissuesduplicationsnoveltypesevolutionsystemhyalinedevelopmentdistinctalsolineage-specificwhetherorigincellparticularlydiversityrepertoiredifferencesundergonetypeIIacrosssimilaridentifyseentissuelargelyseaVertebratespresentinvertebratechordatesmetazoansrisecoincidedleastoneroundwhole-genomeduplicationwellsuitesegmentalUnderstandingleaddiversificationthereforegreatimportanceinterestedmusclesconnectivesupportbodyplansmajorcomponentextracellularmatrixECMfamilygreatlyexpandeduponthusaskedreflectstestexploredjawlessdivergedjawedfivehundredmillionyearsagoprincipalcomponentsXIpresencetaxadisputedemphasizedcharacterizationtestingOveralldiscoveredthirteenknownsubfamiliesableseveralfoundlocirearrangementCladeremainedlinkedclustersphenomenonmuscularsawconsiderablelarvalskeletalcombinationspertainingdifferentexpressionanalysesunablechondrogenesisstagesobservedmeaninglikelylongerrequireearlyfindingssuggestmultifunctionallastcommonancestorconservedaloneexplainComprehensiveAnalysisFibrillarCollagensLampreySuggestsConservedRoleVertebrateMusculoskeletalEvolution

Similar Articles

Cited By (2)