Experimental Urethral Infection with Neisseria gonorrhoeae.

Andreea Waltmann, Joseph A Duncan, Gerald B Pier, Colette Cywes-Bentley, Myron S Cohen, Marcia M Hobbs
Author Information
  1. Andreea Waltmann: School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
  2. Joseph A Duncan: School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
  3. Gerald B Pier: Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
  4. Colette Cywes-Bentley: Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
  5. Myron S Cohen: School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
  6. Marcia M Hobbs: School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA. marcia_hobbs@med.unc.edu.

Abstract

Gonorrhea rates and antibiotic resistance are both increasing. Neisseria gonorrhoeae (Ng) is an exclusively human pathogen and is exquisitely adapted to its natural host. Ng can subvert immune responses and undergoes frequent antigenic variation, resulting in limited immunity and protection from reinfection. Previous gonococcal vaccine efforts have been largely unsuccessful, and the last vaccine to be tested in humans was more than 35 years ago. Advancing technologies and the threat of untreatable gonorrhea have fueled renewed pursuit of a vaccine as a long-term sustainable solution for gonorrhea control. Despite the development of a female mouse model of genital gonococcal infection two decades ago, correlates of immunity or protection remain largely unknown, making the gonococcus a challenging vaccine target. The controlled human urethral infection model of gonorrhea (Ng CHIM) has been used to study gonococcal pathogenesis and the basis of anti-gonococcal immunity. Over 200 participants have been inoculated without serious adverse events. The Ng CHIM replicates the early natural course of urethral infection. We are now at an inflexion point to pivot the use of the model for vaccine testing to address the urgency of improved gonorrhea control. Herein we discuss the need for gonorrhea vaccines, and the advantages and limitations of the Ng CHIM in accelerating the development of gonorrhea vaccines.

References

  1. Lancet Infect Dis. 2017 Aug;17(8):e235-e279 [PMID: 28701272]
  2. J Infect Dis. 1999 Feb;179(2):371-81 [PMID: 9878021]
  3. Annu Rev Microbiol. 2017 Sep 8;71:665-686 [PMID: 28886683]
  4. Lancet. 1997 Jun 28;349(9069):1868-73 [PMID: 9217758]
  5. Nat Immunol. 2002 Mar;3(3):229-36 [PMID: 11850628]
  6. Methods Mol Biol. 2019;1997:413-429 [PMID: 31119637]
  7. Am Fam Physician. 2016 Nov 1;94(9):723-726 [PMID: 27929243]
  8. J Microbiol Methods. 2011 Dec;87(3):350-4 [PMID: 21986029]
  9. Sex Transm Dis. 1992 Jul-Aug;19(4):185-92 [PMID: 1411832]
  10. Bull World Health Organ. 2019 Aug 01;97(8):548-562P [PMID: 31384073]
  11. Front Microbiol. 2011 Jul 01;2:107 [PMID: 21747807]
  12. Mol Microbiol. 1997 Dec;26(5):971-80 [PMID: 9426134]
  13. Euro Surveill. 2019 Mar;24(10): [PMID: 30862336]
  14. Mucosal Immunol. 2014 Jan;7(1):165-76 [PMID: 23757303]
  15. Sex Transm Dis. 1994 Mar-Apr;21(2 Suppl):S32-7 [PMID: 8042113]
  16. Curr Opin Infect Dis. 2021 Feb 1;34(1):40-49 [PMID: 33337618]
  17. Vaccine. 1996 Jul;14(10):1009-15 [PMID: 8873396]
  18. Infect Immun. 2006 May;74(5):2965-74 [PMID: 16622235]
  19. Semin Pediatr Infect Dis. 2005 Oct;16(4):258-70 [PMID: 16210106]
  20. J Infect Dis. 2013 Dec 1;208(11):1821-9 [PMID: 24048962]
  21. J Infect Dis. 2012 Jul 1;206(1):6-14 [PMID: 22517910]
  22. PLoS Med. 2017 Jul 7;14(7):e1002344 [PMID: 28686231]
  23. Clin Infect Dis. 2018 Jan 18;66(3):437-443 [PMID: 29136127]
  24. Vaccine. 2007 Apr 20;25(16):3080-4 [PMID: 17287053]
  25. Lancet. 1992 Oct 31;340(8827):1074-8 [PMID: 1357461]
  26. Clin Infect Dis. 2005 Jul 1;41(1):67-74 [PMID: 15937765]
  27. Infect Immun. 1999 Nov;67(11):5699-708 [PMID: 10531218]
  28. Front Immunol. 2019 Feb 19;9:3187 [PMID: 30838004]
  29. J Clin Invest. 1975 Jun;55(6):1349-56 [PMID: 805797]
  30. Lancet. 2017 Sep 30;390(10102):1603-1610 [PMID: 28705462]
  31. Sex Health. 2019 Sep;16(5):412-425 [PMID: 31437420]
  32. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17142-7 [PMID: 16275906]
  33. Mucosal Immunol. 2012 Jan;5(1):19-29 [PMID: 21937985]
  34. MMWR Morb Mortal Wkly Rep. 2020 Dec 18;69(50):1911-1916 [PMID: 33332296]
  35. Mol Microbiol. 1998 Feb;27(3):611-6 [PMID: 9489672]
  36. Sex Transm Dis. 2017 May;44(5):266-271 [PMID: 28407641]
  37. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14851-6 [PMID: 8962144]
  38. Infect Immun. 2005 Jul;73(7):4171-9 [PMID: 15972507]
  39. Vaccines (Basel). 2019 Jan 05;7(1): [PMID: 30621260]
  40. Am J Epidemiol. 1999 Feb 15;149(4):353-8 [PMID: 10025478]
  41. Br J Vener Dis. 1946 Jun;22:84 [PMID: 20989324]
  42. Clin Infect Dis. 2019 Sep 13;69(7):1101-1111 [PMID: 30551148]
  43. Sex Transm Dis. 2001 Oct;28(10):555-64 [PMID: 11689753]
  44. Sex Transm Infect. 2013 Dec;89(8):613-5 [PMID: 23920397]
  45. Clin Infect Dis. 2015 Jul 15;61(2):260-9 [PMID: 25900168]
  46. Sex Transm Dis. 2011 Aug;38(8):750-4 [PMID: 21317686]
  47. Sex Transm Infect. 2013 Dec;89(8):672-8 [PMID: 24005255]
  48. Vaccine. 1985 Mar;3(1):3-10 [PMID: 2408396]
  49. Sex Transm Dis. 2019 Nov;46(11):743-747 [PMID: 31517767]
  50. Obstet Gynecol. 2012 Jul;120(1):37-43 [PMID: 22678036]
  51. Infect Immun. 2010 Jan;78(1):433-40 [PMID: 19901062]
  52. J Lancet. 1946 Mar;66:65-7 [PMID: 21017367]
  53. Vaccine. 2004 Jan 26;22(5-6):660-9 [PMID: 14741158]
  54. Vaccine. 1991 Mar;9(3):154-62 [PMID: 1675029]
  55. Sex Transm Dis. 2020 Dec;47(12):779-789 [PMID: 32773611]
  56. Vaccine. 1999 Feb 26;17(7-8):754-64 [PMID: 10067680]
  57. EMBO J. 1997 Jun 16;16(12):3435-45 [PMID: 9218786]
  58. J Infect Dis. 2000 Sep;182(3):848-55 [PMID: 10950780]
  59. N Engl J Med. 1974 Jan 17;290(3):117-23 [PMID: 4202519]
  60. J Infect Dis. 1976 Apr;133(4):441-7 [PMID: 816974]
  61. Mucosal Immunol. 2017 Nov;10(6):1594-1608 [PMID: 28272393]
  62. PLoS Pathog. 2013;9(8):e1003559 [PMID: 24009500]
  63. Curr Opin HIV AIDS. 2016 Mar;11(2):156-62 [PMID: 26628324]
  64. Infect Immun. 1997 Jun;65(6):2353-61 [PMID: 9169774]
  65. Sex Health. 2018 Feb;15(1):1-12 [PMID: 28838352]
  66. Epidemiol Infect. 2014 Nov;142(11):2422-32 [PMID: 25267407]
  67. J Exp Med. 1986 Nov 1;164(5):1735-48 [PMID: 3095479]
  68. Infect Immun. 1982 Jun;36(3):1006-12 [PMID: 6124502]
  69. Int Urol Nephrol. 2011 Dec;43(4):969-74 [PMID: 21442395]
  70. mBio. 2011 May 24;2(3):e00095-11 [PMID: 21610119]
  71. Euro Surveill. 2019 Feb;24(8): [PMID: 30808445]
  72. mBio. 2013 Nov 19;4(6):e00892-13 [PMID: 24255126]
  73. Vaccine. 2009 Jun 24;27 Suppl 2:B3-12 [PMID: 19481313]
  74. PLoS Pathog. 2020 Dec 8;16(12):e1008602 [PMID: 33290434]
  75. Future Microbiol. 2012 Dec;7(12):1401-22 [PMID: 23231489]
  76. mBio. 2019 Nov 5;10(6): [PMID: 31690678]
  77. Front Microbiol. 2011 May 31;2:123 [PMID: 21734909]
  78. J Exp Med. 1997 May 5;185(9):1557-64 [PMID: 9151893]

Grants

  1. U01 AI114378/NIAID NIH HHS

MeSH Term

Neisseria gonorrhoeae
Gonorrhea
Humans
Animals
Disease Models, Animal
Urethra
Bacterial Vaccines
Mice
Female

Chemicals

Bacterial Vaccines

Word Cloud

Created with Highcharts 10.0.0gonorrheaNgvaccineimmunitygonococcalmodelinfectionCHIMNeisseriagonorrhoeaehumannaturalprotectionlargelyagocontroldevelopmenturethralvaccinesGonorrhearatesantibioticresistanceincreasingexclusivelypathogenexquisitelyadaptedhostcansubvertimmuneresponsesundergoesfrequentantigenicvariationresultinglimitedreinfectionPreviouseffortsunsuccessfullasttestedhumans35 yearsAdvancingtechnologiesthreatuntreatablefueledrenewedpursuitlong-termsustainablesolutionDespitefemalemousegenitaltwodecadescorrelatesremainunknownmakinggonococcuschallengingtargetcontrolledusedstudypathogenesisbasisanti-gonococcal200participantsinoculatedwithoutseriousadverseeventsreplicatesearlycoursenowinflexionpointpivotusetestingaddressurgencyimprovedHereindiscussneedadvantageslimitationsacceleratingExperimentalUrethralInfection

Similar Articles

Cited By