Design and Control of a Compact, Modular Robot for Transbronchial Lung Biopsy.

Stephanie Amack, Margaret Rox, Jason Mitchell, Tayfun Efe Ertop, Maxwell Emerson, Alan Kuntz, Fabien Maldonado, Jason Akulian, Joshua Gafford, Ron Alterovitz, Robert J Webster
Author Information
  1. Stephanie Amack: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
  2. Margaret Rox: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
  3. Jason Mitchell: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
  4. Tayfun Efe Ertop: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
  5. Maxwell Emerson: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
  6. Alan Kuntz: Computer Science, University of North Carolina at Chapel Hill, NC, USA.
  7. Fabien Maldonado: Interventional Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA.
  8. Jason Akulian: Interventional Pulmonology, University of North Carolina at Chapel Hill, NC, USA.
  9. Joshua Gafford: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
  10. Ron Alterovitz: Computer Science, University of North Carolina at Chapel Hill, NC, USA.
  11. Robert J Webster: Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.

Abstract

Lung cancer is one of the most prevalent and deadly forms of cancer, claiming more than 154,000 lives in the USA per year. Accurate targeting and biopsy of pulmonary abnormalities is key for early diagnosis and successful treatment. Many cancerous lesions originate in the peripheral regions of the lung which are not directly accessible from the bronchial tree, thereby requiring percutaneous approaches to collect biopsies, which carry a higher risk of pneumothorax, hemorrhage, and death in extreme cases. In prior work, our group proposed a concept for accessing the peripheral lung through the airways, via a bronchscope deployed steerable needle. In this paper, we present a more compact, modular, multi-stage robot, designed to deploy a steerable needle through a standard flexible bronchoscope, to retrieve biopsies from lesions in the peripheral regions of the lung. The robot has several stages that can control a steerable biopsy needle, as well as concentric tubes, which act as an aiming conduit. The functionality of this robot is demonstrated via closed-loop lesion targeting in a CT scanner. The steerable needle is controlled using a previously proposed sliding mode controller, based on feedback from a magnetic tracker embedded in the steerable needle's tip. Towards developing a clinically viable platform, this system builds on prior work through its modular, compact form factor, and workflow-conscious design that provides precise homing and the ability to interchange tools as needed.

Keywords

References

  1. Semin Intervent Radiol. 2006 Jun;23(2):188-93 [PMID: 21326762]
  2. J Radiol Case Rep. 2017 Jun 30;11(6):6-14 [PMID: 29299093]
  3. IEEE Trans Robot. 2010;26(5):769-780 [PMID: 21566688]
  4. J Med Robot Res. 2017 Mar;2(1): [PMID: 28480335]
  5. Chest. 2012 Aug;142(2):385-393 [PMID: 21980059]
  6. Chest. 1989 May;95(5):1130-8 [PMID: 2651036]
  7. IEEE Trans Biomed Eng. 2014 Nov;61(11):2707-17 [PMID: 24860026]
  8. IEEE Trans Robot. 2010 Apr 1;26(2):209-225 [PMID: 21258648]
  9. Chest. 2000 Apr;117(4):1049-54 [PMID: 10767238]
  10. IEEE Trans Biomed Eng. 2016 Jun;63(6):1167-77 [PMID: 26441438]
  11. Chest. 2002 May;121(5):1521-6 [PMID: 12006438]
  12. BMC Pulm Med. 2017 Apr 11;17(1):59 [PMID: 28399830]
  13. IEEE Trans Robot. 2013 Oct;29(5):1289-1299 [PMID: 25400527]
  14. Semin Intervent Radiol. 2013 Jun;30(2):121-7 [PMID: 24436527]
  15. Rep U S. 2015 Sep-Oct;2015:3255-3261 [PMID: 26942041]
  16. IEEE Trans Robot. 2014 Aug;30(4):853-864 [PMID: 25435829]
  17. IEEE Trans Robot. 2009 Feb 3;25(1):191-196 [PMID: 20431694]
  18. IEEE Int Conf Robot Autom. 2015 May;2015:5378-5383 [PMID: 26157600]
  19. J Thorac Dis. 2015 Dec;7(Suppl 4):S300-3 [PMID: 26807278]
  20. Proc Inst Mech Eng H. 2017 Mar;231(3):250-265 [PMID: 28056627]
  21. Clin Lung Cancer. 2009 Sep;10(5):360-3 [PMID: 19808195]
  22. IEEE Trans Biomed Eng. 2013 Apr;60(4):906-9 [PMID: 23204267]
  23. Chest. 2004 Sep;126(3):748-54 [PMID: 15364752]
  24. Eur Respir J. 2006 Nov;28(5):910-4 [PMID: 16807262]
  25. Thorax. 2015 Apr;70(4):326-32 [PMID: 25746631]
  26. Respirology. 2014 Jul;19(5):636-44 [PMID: 24797257]

Grants

  1. R01 EB024864/NIBIB NIH HHS
  2. T32 EB021937/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0steerableneedleLungperipherallungrobotcancertargetingbiopsylesionsregionsbiopsiespriorworkproposedviacompactmodularBiopsyoneprevalentdeadlyformsclaiming154000livesUSAperyearAccuratepulmonaryabnormalitieskeyearlydiagnosissuccessfultreatmentManycancerousoriginatedirectlyaccessiblebronchialtreetherebyrequiringpercutaneousapproachescollectcarryhigherriskpneumothoraxhemorrhagedeathextremecasesgroupconceptaccessingairwaysbronchscopedeployedpaperpresentmulti-stagedesigneddeploystandardflexiblebronchoscoperetrieveseveralstagescancontrolwellconcentrictubesactaimingconduitfunctionalitydemonstratedclosed-looplesionCTscannercontrolledusingpreviouslyslidingmodecontrollerbasedfeedbackmagnetictrackerembeddedneedle'stipTowardsdevelopingclinicallyviableplatformsystembuildsformfactorworkflow-consciousdesignprovidesprecisehomingabilityinterchangetoolsneededDesignControlCompactModularRobotTransbronchialBronchoscopyCancerMinimally-InvasiveSurgeryRobotics

Similar Articles

Cited By