Non-Darwinian Molecular Biology.

Alexander F Palazzo, Nevraj S Kejiou
Author Information
  1. Alexander F Palazzo: Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
  2. Nevraj S Kejiou: Department of Biochemistry, University of Toronto, Toronto, ON, Canada.

Abstract

With the discovery of the double helical structure of DNA, a shift occurred in how biologists investigated questions surrounding cellular processes, such as protein synthesis. Instead of viewing biological activity through the lens of chemical reactions, this new field used biological information to gain a new profound view of how biological systems work. Molecular biologists asked new types of questions that would have been inconceivable to the older generation of researchers, such as how cellular machineries convert inherited biological information into functional molecules like proteins. This new focus on biological information also gave molecular biologists a way to link their findings to concepts developed by genetics and the modern synthesis. However, by the late 1960s this all changed. Elevated rates of mutation, unsustainable genetic loads, and high levels of variation in populations, challenged Darwinian evolution, a central tenant of the modern synthesis, where adaptation was the main driver of evolutionary change. Building on these findings, Motoo Kimura advanced the neutral theory of molecular evolution, which advocates that selection in multicellular eukaryotes is weak and that most genomic changes are neutral and due to random drift. This was further elaborated by Jack King and Thomas Jukes, in their paper "Non-Darwinian Evolution", where they pointed out that the observed changes seen in proteins and the types of polymorphisms observed in populations only become understandable when we take into account biochemistry and Kimura's new theory. Fifty years later, most molecular biologists remain unaware of these fundamental advances. Their adaptionist viewpoint fails to explain data collected from new powerful technologies which can detect exceedingly rare biochemical events. For example, high throughput sequencing routinely detects RNA transcripts being produced from almost the entire genome yet are present less than one copy per thousand cells and appear to lack any function. Molecular biologists must now reincorporate ideas from classical biochemistry and absorb modern concepts from molecular evolution, to craft a new lens through which they can evaluate the functionality of transcriptional units, and make sense of our messy, intricate, and complicated genome.

Keywords

References

  1. Cell Res. 2008 Jan;18(1):73-84 [PMID: 18166977]
  2. Science. 1983 Aug 12;221(4611):663-5 [PMID: 6306772]
  3. Nat Rev Mol Cell Biol. 2015 Sep;16(9):533-44 [PMID: 26285679]
  4. Bioessays. 2021 Feb;43(2):e2000197 [PMID: 33165929]
  5. Nucleic Acids Res. 2008 May;36(9):e50 [PMID: 18413342]
  6. Genome Biol Evol. 2013;5(3):578-90 [PMID: 23431001]
  7. Curr Biol. 2013 Apr 8;23(7):R259-61 [PMID: 23578867]
  8. Genome Biol. 2018 Sep 14;19(1):132 [PMID: 30217230]
  9. Science. 2010 Nov 12;330(6006):920-1 [PMID: 21071654]
  10. Science. 1969 May 16;164(3881):788-98 [PMID: 5767777]
  11. Science. 1968 Aug 9;161(3841):529-40 [PMID: 4874239]
  12. Nature. 2006 Mar 2;440(7080):41-5 [PMID: 16511485]
  13. Brookhaven Symp Biol. 1972;23:366-70 [PMID: 5065367]
  14. Nature. 2022 Feb;602(7895):101-105 [PMID: 35022609]
  15. Mol Biol Evol. 2020 Jun 1;37(6):1761-1774 [PMID: 32101291]
  16. Proc Natl Acad Sci U S A. 1963 Oct;50:672-9 [PMID: 14077496]
  17. Symp Soc Exp Biol. 1958;12:138-63 [PMID: 13580867]
  18. Jpn J Genet. 1991 Aug;66(4):367-86 [PMID: 1954033]
  19. Nature. 1982 Oct 21;299(5885):691-8 [PMID: 6181418]
  20. G3 (Bethesda). 2016 Aug 09;6(8):2583-91 [PMID: 27317782]
  21. Nat Rev Genet. 2009 Mar;10(3):195-205 [PMID: 19204717]
  22. Mol Biol Evol. 2005 Apr;22(4):1137-46 [PMID: 15689525]
  23. PLoS Genet. 2009 Jan;5(1):e1000329 [PMID: 19132081]
  24. Nature. 1980 Oct 9;287(5782):504-9 [PMID: 6999364]
  25. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14937-42 [PMID: 10611316]
  26. Mol Biol Evol. 2021 May 4;38(5):1874-1887 [PMID: 33355660]
  27. Cold Spring Harb Perspect Biol. 2013 Oct 01;5(10):a010363 [PMID: 23838442]
  28. Nature. 2007 Jun 14;447(7146):799-816 [PMID: 17571346]
  29. Trends Genet. 2009 Sep;25(9):395-403 [PMID: 19717203]
  30. Eur J Hum Genet. 2006 Oct;14(10):1074-81 [PMID: 16757948]
  31. FEBS J. 2020 Apr;287(7):1260-1261 [PMID: 32250557]
  32. Science. 2012 Sep 28;337(6102):1675-8 [PMID: 22956687]
  33. Genes Dev. 2016 Aug 15;30(16):1895-907 [PMID: 27601530]
  34. Nature. 2015 Mar 19;519(7543):315-20 [PMID: 25762137]
  35. PLoS One. 2020 Apr 30;15(4):e0232167 [PMID: 32353016]
  36. Curr Biol. 2012 Nov 6;22(21):R898-9 [PMID: 23137679]
  37. Annu Rev Genomics Hum Genet. 2011;12:347-66 [PMID: 21756106]
  38. Genetics. 2000 Jun;155(2):909-19 [PMID: 10835409]
  39. Nat Rev Genet. 2009 Oct;10(10):715-24 [PMID: 19763154]
  40. Curr Genomics. 2012 Mar;13(1):65-73 [PMID: 22942676]
  41. Nature. 1968 Mar 2;217(5131):825-7 [PMID: 4867974]
  42. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11952-7 [PMID: 23818646]
  43. Biochim Biophys Acta. 2012 Jun;1819(6):566-77 [PMID: 22248619]
  44. Elife. 2018 Aug 23;7: [PMID: 30125248]
  45. Nature. 2002 Apr 4;416(6880):499-506 [PMID: 11932736]
  46. Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):801-5 [PMID: 26787897]
  47. Genome Biol Evol. 2017 Jul 1;9(7):1880-1885 [PMID: 28854598]
  48. PLoS Genet. 2010 Dec 09;6(12):e1001236 [PMID: 21151575]
  49. Annu Rev Microbiol. 2006;60:327-49 [PMID: 16824010]
  50. Annu Rev Genomics Hum Genet. 2009;10:285-311 [PMID: 19630562]
  51. ACS Omega. 2019 Mar 26;4(3):5879-5899 [PMID: 31459737]
  52. Nature. 2012 Sep 6;489(7414):101-8 [PMID: 22955620]
  53. Nature. 1998 Nov 26;396(6709):336-42 [PMID: 9845070]
  54. Annu Rev Genet. 2018 Nov 23;52:131-157 [PMID: 30476449]
  55. Nature. 1980 Apr 17;284(5757):604-7 [PMID: 7366731]
  56. J Mol Evol. 1999 Aug;49(2):169-81 [PMID: 10441669]
  57. Evolution. 2019 Jan;73(1):111-114 [PMID: 30460993]
  58. Mol Biol Evol. 2018 Mar 1;35(3):666-675 [PMID: 29228327]
  59. Cell Res. 2008 Jan;18(1):148-61 [PMID: 18166979]
  60. Mol Biol Evol. 2006 Nov;23(11):2072-80 [PMID: 16887903]
  61. Nature. 1978 Feb 9;271(5645):501 [PMID: 622185]
  62. Biol Direct. 2012 Oct 13;7:35 [PMID: 23062217]
  63. Nature. 1968 Feb 17;217(5129):624-6 [PMID: 5637732]
  64. Nature. 1980 Mar 13;284(5752):185-7 [PMID: 6987527]
  65. Mol Biol Evol. 2018 Jun 1;35(6):1327-1331 [PMID: 29659993]
  66. PLoS Genet. 2014 May 08;10(5):e1004351 [PMID: 24809441]
  67. DNA Repair (Amst). 2018 Nov;71:82-86 [PMID: 30174300]
  68. Mol Biol Evol. 2018 Jun 1;35(6):1366-1371 [PMID: 29722831]
  69. Cell. 2013 Apr 25;153(3):590-600 [PMID: 23622243]
  70. Cell Rep. 2021 Jul 27;36(4):109439 [PMID: 34320353]
  71. Genome Biol Evol. 2009 Jun 27;1:145-52 [PMID: 20333185]
  72. Annu Rev Biochem. 2010;79:471-505 [PMID: 20235827]
  73. Wiley Interdiscip Rev RNA. 2020 Mar;11(2):e1572 [PMID: 31713323]
  74. Evolution. 1976 Jun;30(2):314-334 [PMID: 28563044]
  75. PLoS Genet. 2020 Apr 1;16(4):e1008702 [PMID: 32236092]
  76. Bioessays. 2006 May;28(5):525-33 [PMID: 16615090]
  77. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1371-5 [PMID: 6940164]
  78. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 [PMID: 16176987]
  79. Genetics. 1966 Aug;54(2):595-609 [PMID: 5968643]
  80. FEBS J. 2020 Apr;287(7):1306-1322 [PMID: 31663687]
  81. Nat Commun. 2019 Nov 27;10(1):5411 [PMID: 31776345]
  82. Cell. 2017 Jul 27;170(3):534-547.e23 [PMID: 28753428]
  83. J Hered. 2009 Sep-Oct;100(5):637-47 [PMID: 19625453]
  84. Mol Biol Evol. 2005 Dec;22(12):2318-42 [PMID: 16120807]
  85. Nat Ecol Evol. 2022 Jan;6(1):103-115 [PMID: 34795386]
  86. Nature. 2011 Oct 12;478(7370):476-82 [PMID: 21993624]
  87. Science. 2009 Jan 16;323(5912):379-82 [PMID: 19150844]
  88. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5294-300 [PMID: 23479647]
  89. Trends Ecol Evol. 2008 Oct;23(10):578-87 [PMID: 18715673]
  90. Front Genet. 2018 Oct 17;9:440 [PMID: 30386371]
  91. Nature. 2012 Sep 6;489(7414):75-82 [PMID: 22955617]
  92. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  93. Nature. 2017 Jun 1;546(7656):153-157 [PMID: 28569798]
  94. J Theor Biol. 1965 Mar;8(2):357-66 [PMID: 5876245]
  95. BMC Biol. 2016 Dec 23;14(1):114 [PMID: 28010725]
  96. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1082-7 [PMID: 21199946]
  97. Trends Genet. 2001 Oct;17(10):589-96 [PMID: 11585665]
  98. Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92 [PMID: 23077252]
  99. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581-98 [PMID: 42062]
  100. J Biol Chem. 2018 May 18;293(20):7811-7823 [PMID: 29610279]
  101. Mol Biol Evol. 2020 Jul 1;37(7):2015-2028 [PMID: 32145028]
  102. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20461-6 [PMID: 23184996]
  103. Nat Rev Genet. 2012 Sep;13(9):613-26 [PMID: 22868264]
  104. Nature. 2001 Oct 11;413(6856):644-7 [PMID: 11675789]
  105. Curr Opin Genet Dev. 2020 Jun;62:58-64 [PMID: 32634682]
  106. RNA. 2007 Jan;13(1):87-96 [PMID: 17095544]
  107. Genome Biol. 2017 Oct 30;18(1):208 [PMID: 29084568]
  108. Nat Rev Genet. 2011 Oct 04;12(11):756-66 [PMID: 21969038]
  109. Genes Dev. 2008 Feb 1;22(3):331-45 [PMID: 18245447]
  110. Genetics. 1966 Aug;54(2):577-94 [PMID: 5968642]
  111. Cell. 2017 Aug 10;170(4):603-604 [PMID: 28802036]
  112. EMBO J. 2002 Feb 1;21(3):195-201 [PMID: 11823412]
  113. Genome Res. 2008 Aug;18(8):1216-23 [PMID: 18463301]
  114. Proc Natl Acad Sci U S A. 1974 May;71(5):1743-7 [PMID: 4600264]
  115. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11597-11607 [PMID: 32385156]
  116. Genes Dev. 2005 Jul 1;19(13):1512-7 [PMID: 15998806]
  117. Nature. 1953 May 30;171(4361):964-7 [PMID: 13063483]
  118. Nature. 2002 Jun 6;417(6889):618-24 [PMID: 12050657]
  119. Science. 2012 Nov 9;338(6108):758-67 [PMID: 23145453]
  120. Biochem Biophys Res Commun. 2013 Jan 25;430(4):1340-3 [PMID: 23268340]
  121. Nat Biotechnol. 2009 Jul;27(7):667-70 [PMID: 19561594]
  122. Genome Biol Evol. 2014 May 09;6(5):1234-7 [PMID: 24814287]
  123. Science. 2012 Sep 7;337(6099):1159, 1161 [PMID: 22955811]
  124. Ann N Y Acad Sci. 2001 Apr;929:71-3 [PMID: 11349431]
  125. Nat Struct Mol Biol. 2007 Feb;14(2):103-5 [PMID: 17277804]
  126. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:989-98 [PMID: 6345082]
  127. PLoS Genet. 2014 Jul 24;10(7):e1004525 [PMID: 25057982]
  128. Cell. 1977 Sep;12(1):1-8 [PMID: 902310]
  129. Genetics. 2001 Jun;158(2):927-31 [PMID: 11430355]
  130. Science. 1977 Jun 10;196(4295):1161-6 [PMID: 860134]
  131. J Biosci. 2003 Jun;28(4):371-7 [PMID: 12799485]
  132. Nucleic Acids Res. 2009 Aug;37(14):4873-86 [PMID: 19546110]
  133. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8420-7 [PMID: 9671692]
  134. Cell. 2013 Jan 31;152(3):492-503 [PMID: 23374345]
  135. Mol Biol Evol. 2006 Dec;23(12):2392-404 [PMID: 16980575]
  136. Nat Rev Genet. 2015 Jul;16(7):409-20 [PMID: 26055156]
  137. Nature. 2018 Feb 8;554(7691):195-201 [PMID: 29420478]
  138. Genetics. 2013 Apr;193(4):1209-20 [PMID: 23335336]
  139. IUBMB Life. 2011 Jul;63(7):528-37 [PMID: 21698757]
  140. Found Sci. 2015;20(2):175-187 [PMID: 25983569]
  141. Nat Rev Mol Cell Biol. 2015 Nov;16(11):665-77 [PMID: 26397022]
  142. Nature. 2000 Sep 21;407(6802):401-5 [PMID: 11014198]
  143. Front Genet. 2015 Jan 26;6:2 [PMID: 25674102]
  144. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3717-21 [PMID: 358197]
  145. J Mol Biol. 1978 Mar 25;120(1):33-53 [PMID: 642006]
  146. Sci Signal. 2009 Mar 03;2(60):pe11 [PMID: 19261595]
  147. Biosci Rep. 2003 Oct-Dec;23(5-6):225-37 [PMID: 15074543]
  148. Nature. 2020 Dec;588(7838):503-508 [PMID: 33299178]
  149. Cell. 1983 Jul;33(3):717-28 [PMID: 6409417]
  150. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3386-91 [PMID: 18287003]
  151. Heredity (Edinb). 2008 Feb;100(2):132-40 [PMID: 17167519]
  152. Science. 1965 Mar 19;147(3664):1462-5 [PMID: 14263761]
  153. Cell. 1992 Oct 30;71(3):515-26 [PMID: 1423610]
  154. Cell. 2020 Nov 25;183(5):1151-1161 [PMID: 33068526]
  155. Heredity (Edinb). 2007 Oct;99(4):364-73 [PMID: 17622265]
  156. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2848-52 [PMID: 4527913]
  157. BMC Biol. 2017 Aug 16;15(1):71 [PMID: 28814299]
  158. Science. 2012 Mar 9;335(6073):1235-8 [PMID: 22403392]
  159. Bioessays. 2019 Nov;41(11):e1900066 [PMID: 31544971]
  160. Nat Rev Genet. 2016 Oct 14;17(11):704-714 [PMID: 27739533]
  161. Mol Cell Biol. 1990 Jan;10(1):28-36 [PMID: 1688465]
  162. Proc Natl Acad Sci U S A. 1962 Apr 15;48:582-92 [PMID: 13918161]
  163. Nature. 1980 Apr 17;284(5757):601-3 [PMID: 6245369]
  164. Cell. 1983 Jul;33(3):729-40 [PMID: 6409418]
  165. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E831-40 [PMID: 22416125]
  166. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3171-5 [PMID: 269380]
  167. Nat Rev Genet. 2011 Nov 18;12(12):875-81 [PMID: 22094950]

Word Cloud

Created with Highcharts 10.0.0newbiologistsbiologicalmolecularevolutionsynthesisinformationMolecularmodernneutraltheoryDNAquestionscellularlenstypesproteinsfindingsconceptshighpopulationschangesobservedbiochemistrycanRNAgenomejunkdiscoverydoublehelicalstructureshiftoccurredinvestigatedsurroundingprocessesproteinInsteadviewingactivitychemicalreactionsfieldusedgainprofoundviewsystemsworkaskedinconceivableoldergenerationresearchersmachineriesconvertinheritedfunctionalmoleculeslikefocusalsogavewaylinkdevelopedgeneticsHoweverlate1960schangedElevatedratesmutationunsustainablegeneticloadslevelsvariationchallengedDarwiniancentraltenantadaptationmaindriverevolutionarychangeBuildingMotooKimuraadvancedadvocatesselectionmulticellulareukaryotesweakgenomicduerandomdriftelaboratedJackKingThomasJukespaper"Non-DarwinianEvolution"pointedseenpolymorphismsbecomeunderstandabletakeaccountKimura'sFiftyyearslaterremainunawarefundamentaladvancesadaptionistviewpointfailsexplaindatacollectedpowerfultechnologiesdetectexceedinglyrarebiochemicaleventsexamplethroughputsequencingroutinelydetectstranscriptsproducedalmostentireyetpresentlessonecopyperthousandcellsappearlackfunctionmustnowreincorporateideasclassicalabsorbcraftevaluatefunctionalitytranscriptionalunitsmakesensemessyintricatecomplicatedNon-DarwinianBiologyrobustness

Similar Articles

Cited By