Screening and Validation of p38 MAPK Involved in Ovarian Development of .

Tianqing Huang, Wei Gu, Enhui Liu, Lanlan Zhang, Fulin Dong, Xianchen He, Wenlong Jiao, Chunyu Li, Bingqian Wang, Gefeng Xu
Author Information
  1. Tianqing Huang: Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
  2. Wei Gu: Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
  3. Enhui Liu: Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
  4. Lanlan Zhang: Heilongjiang Province General Station of Aquatic Technology Promotion, Harbin, China.
  5. Fulin Dong: Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
  6. Xianchen He: Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, China.
  7. Wenlong Jiao: Gansu Fisheries Research Institute, Lanzhou, China.
  8. Chunyu Li: Xinjiang Tianyun Organic Agriculture Co., Yili Group, Hohhot, China.
  9. Bingqian Wang: Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
  10. Gefeng Xu: Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.

Abstract

(lenok) is a rare cold-water fish native to China that is of high meat quality. Its wild population has declined sharply in recent years, and therefore, exploring the molecular mechanisms underlying the development and reproduction of lenoks for the purposes of artificial breeding and genetic improvement is necessary. The lenok comparative transcriptome was analyzed by combining single molecule, real-time, and next generation sequencing (NGS) technology. Differentially expressed genes (DEGs) were identified in five tissues (head kidney, spleen, liver, muscle, and gonad) between immature [300 days post-hatching (dph)] and mature [three years post-hatching (ph)] lenoks. In total, 234,124 and 229,008 full-length non-chimeric reads were obtained from the immature and mature sequencing data, respectively. After NGS correction, 61,405 and 59,372 non-redundant transcripts were obtained for the expression level and pathway enrichment analyses, respectively. Compared with the mature group, 719 genes with significantly increased expression and 1,727 genes with significantly decreased expression in all five tissues were found in the immature group. Furthermore, DEGs and pathways involved in the endocrine system and gonadal development were identified, and p38 mitogen-activated protein kinases (MAPKs) were identified as potentially regulating gonadal development in lenok. Inhibiting the activity of p38 MAPKs resulted in abnormal levels of gonadotropin-releasing hormone, follicle-stimulating hormone, and estradiol, and affected follicular development. The full-length transcriptome data obtained in this study may provide a valuable reference for the study of gene function, gene expression, and evolutionary relationships in and may illustrate the basic regulatory mechanism of ovarian development in teleosts.

Keywords

References

  1. Biochem J. 2016 Jun 1;473(11):1483-501 [PMID: 27234585]
  2. Int J Dev Biol. 2018;62(6-7-8):419-429 [PMID: 29938754]
  3. Folia Histochem Cytobiol. 2015;53(3):189-200 [PMID: 26339984]
  4. Arch Biochem Biophys. 2002 Aug 1;404(1):55-61 [PMID: 12127069]
  5. Nucleic Acids Res. 2006 Jul 19;34(12):3585-98 [PMID: 16855295]
  6. PLoS One. 2014 Apr 15;9(4):e94650 [PMID: 24736250]
  7. Nat Commun. 2016 Jun 24;7:11708 [PMID: 27339440]
  8. Genome Res. 2018 Sep;28(9):1415-1425 [PMID: 30061115]
  9. Vet Immunol Immunopathol. 2014 Aug 15;160(3-4):201-8 [PMID: 25001908]
  10. Reprod Biomed Online. 2002;5 Suppl 1:1-7 [PMID: 12537774]
  11. Gen Comp Endocrinol. 2019 Feb 1;272:93-108 [PMID: 30576646]
  12. Methods Mol Biol. 2021;2242:15-42 [PMID: 33961215]
  13. Sci Rep. 2017 Aug 9;7(1):7648 [PMID: 28794490]
  14. Animals (Basel). 2021 Apr 15;11(4): [PMID: 33920938]
  15. Res Immunol. 1991 May;142(4):362-6 [PMID: 1925007]
  16. J Comp Physiol B. 2017 Dec;187(8):1057-1089 [PMID: 28447151]
  17. Dev Biol. 2002 May 1;245(1):200-12 [PMID: 11969266]
  18. Int J Mol Sci. 2021 Jun 17;22(12): [PMID: 34204216]
  19. Mol Reprod Dev. 2001 Jul;59(3):265-76 [PMID: 11424212]
  20. Theriogenology. 2018 Oct 15;120:123-137 [PMID: 30118947]
  21. Hum Reprod. 2020 May 1;35(5):1145-1158 [PMID: 32372097]
  22. Bioinformatics. 2014 Nov 1;30(21):3004-11 [PMID: 25015988]
  23. Front Biosci (Landmark Ed). 2019 Mar 1;24(5):983-993 [PMID: 30844725]
  24. Front Genet. 2019 Nov 15;10:1126 [PMID: 31803231]
  25. Int J Mol Sci. 2018 Aug 21;19(9): [PMID: 30134624]
  26. Hum Reprod. 2012 Jun;27(6):1790-800 [PMID: 22447628]
  27. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1291-9 [PMID: 24639501]
  28. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  29. Sci Total Environ. 2021 May 20;770:144727 [PMID: 33736362]
  30. Biol Reprod. 2016 Jul;95(1):19 [PMID: 27307075]
  31. Sci Rep. 2018 Feb 2;8(1):2197 [PMID: 29396453]
  32. Nat Genet. 2004 Jun;36(6):647-52 [PMID: 15156142]
  33. PLoS One. 2013 May 20;8(5):e64058 [PMID: 23700457]
  34. PLoS One. 2014 Oct 22;9(10):e110548 [PMID: 25338101]
  35. Acta Endocrinol (Copenh). 1985 Jan;108(1):104-10 [PMID: 3918396]
  36. Bioinformatics. 2013 Apr 15;29(8):1035-43 [PMID: 23428641]
  37. Reprod Fertil Dev. 2020 Oct;32(14):1200-1211 [PMID: 33002394]
  38. Int J Dev Biol. 2012;56(10-12):959-67 [PMID: 23417417]
  39. BMC Genomics. 2020 Jan 23;21(1):73 [PMID: 31973692]
  40. Gene. 2017 Dec 30;637:203-210 [PMID: 28962924]
  41. J Endocrinol. 2019 Feb 1;240(2):345-360 [PMID: 30508412]
  42. Reprod Domest Anim. 2010 Sep;45 Suppl 3:32-41 [PMID: 24417197]
  43. Gen Comp Endocrinol. 1998 Jul;111(1):38-50 [PMID: 9653020]
  44. Front Cardiovasc Med. 2021 Nov 25;8:724233 [PMID: 34901204]
  45. J Biol Chem. 1997 May 2;272(18):12116-21 [PMID: 9115281]
  46. Gen Comp Endocrinol. 2019 Jun 1;277:9-16 [PMID: 30500373]
  47. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W720-4 [PMID: 16845106]
  48. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  49. Dev Comp Immunol. 2017 Jan;66:73-83 [PMID: 27387152]
  50. Comp Biochem Physiol Part D Genomics Proteomics. 2017 Jun;22:50-57 [PMID: 28189874]
  51. Domest Anim Endocrinol. 2008 Aug;35(2):198-207 [PMID: 18638663]
  52. Endocr J. 1993 Dec;40(6):715-26 [PMID: 7951542]
  53. Theriogenology. 2010 Jun;73(9):1210-9 [PMID: 20226514]
  54. J Vis Exp. 2012 Jun 07;(64):e4013 [PMID: 22710371]
  55. Mol Endocrinol. 2000 Aug;14(8):1283-300 [PMID: 10935551]
  56. BMC Immunol. 2012 Sep 14;13:52 [PMID: 22978666]
  57. Sci Rep. 2019 Apr 23;9(1):6454 [PMID: 31015532]
  58. Genome Res. 2016 Dec;26(12):1742-1752 [PMID: 27852650]
  59. Biol Reprod. 2010 Apr;82(4):656-61 [PMID: 19864315]
  60. Sci Rep. 2018 Nov 16;8(1):16920 [PMID: 30446694]
  61. Immunol Rev. 2012 May;247(1):107-19 [PMID: 22500835]
  62. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  63. Front Immunol. 2019 Jan 25;10:42 [PMID: 30740103]
  64. Development. 2016 Jun 1;143(11):1893-906 [PMID: 27068105]
  65. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  66. Gen Comp Endocrinol. 2011 Jul 1;172(3):458-67 [PMID: 21521645]
  67. Nat Commun. 2016 Jun 24;7:11706 [PMID: 27339290]
  68. Int J Legal Med. 2013 Jul;127(4):741-7 [PMID: 23306520]
  69. Biochim Biophys Acta. 1994 Jan 13;1220(2):212-8 [PMID: 8312365]
  70. DNA Res. 2019 Aug 1;26(4):353-363 [PMID: 31274170]
  71. Mol Cell Endocrinol. 2012 Jun 5;356(1-2):24-30 [PMID: 21684319]
  72. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  73. Dev Biol. 2016 Mar 15;411(2):301-313 [PMID: 26875497]
  74. J Equine Vet Sci. 2019 Apr;75:93-103 [PMID: 31002102]
  75. Physiol Rev. 1999 Jan;79(1):143-80 [PMID: 9922370]
  76. Front Cell Neurosci. 2021 Nov 25;15:764141 [PMID: 34899191]
  77. Mar Genomics. 2021 Aug;58:100834 [PMID: 33371994]
  78. Sci Rep. 2017 Mar 06;7:43850 [PMID: 28262836]
  79. Gen Comp Endocrinol. 2005 May 15;142(1-2):117-33 [PMID: 15862556]

Word Cloud

Created with Highcharts 10.0.0developmentlenokexpressionp38transcriptomeNGSgenesidentifiedimmaturematurefull-lengthobtainedyearslenokssequencingDEGsfivetissuespost-hatching]datarespectivelygroupsignificantlygonadalMAPKshormonestudymaygeneovarianMAPKrarecold-waterfishnativeChinahighmeatqualitywildpopulationdeclinedsharplyrecentthereforeexploringmolecularmechanismsunderlyingreproductionpurposesartificialbreedinggeneticimprovementnecessarycomparativeanalyzedcombiningsinglemoleculereal-timenextgenerationtechnologyDifferentiallyexpressedheadkidneyspleenlivermusclegonad[300daysdph[threephtotal234124229008non-chimericreadscorrection6140559372non-redundanttranscriptslevelpathwayenrichmentanalysesCompared719increased1727decreasedfoundFurthermorepathwaysinvolvedendocrinesystemmitogen-activatedproteinkinasespotentiallyregulatingInhibitingactivityresultedabnormallevelsgonadotropin-releasingfollicle-stimulatingestradiolaffectedfollicularprovidevaluablereferencefunctionevolutionaryrelationshipsillustratebasicregulatorymechanismteleostsScreeningValidationInvolvedOvarianDevelopmentBrachymystaxSMRT

Similar Articles

Cited By