Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic.

Bérengère Husson, Sigrid Lind, Maria Fossheim, Hiroko Kato-Solvang, Mette Skern-Mauritzen, Laurène Pécuchet, Randi B Ingvaldsen, Andrey V Dolgov, Raul Primicerio
Author Information
  1. Bérengère Husson: Institute of Marine Research, Bergen, Norway. ORCID
  2. Sigrid Lind: Norwegian Polar Institute, Tromsø, Norway. ORCID
  3. Maria Fossheim: Institute of Marine Research, Tromsø, Norway. ORCID
  4. Hiroko Kato-Solvang: Institute of Marine Research, Bergen, Norway. ORCID
  5. Mette Skern-Mauritzen: Institute of Marine Research, Bergen, Norway. ORCID
  6. Laurène Pécuchet: UiT - The Arctic University of Tromsø, Tromsø, Norway. ORCID
  7. Randi B Ingvaldsen: Institute of Marine Research, Bergen, Norway. ORCID
  8. Andrey V Dolgov: Polar Branch of the Federal State Budget Scientific Institution, Russian Federal Research Institute of Fisheries and Oceanography ("PINRO" named after N.M.Knipovich), Murmansk, Russia. ORCID
  9. Raul Primicerio: Institute of Marine Research, Tromsø, Norway. ORCID

Abstract

The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12907-12912 [PMID: 31186360]
  2. Glob Chang Biol. 2020 Sep;26(9):4894-4906 [PMID: 32479687]
  3. Glob Chang Biol. 2016 Aug;22(8):2633-50 [PMID: 27111095]
  4. Biol Rev Camb Philos Soc. 2013 May;88(2):349-64 [PMID: 23217173]
  5. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723): [PMID: 28483875]
  6. Ecol Evol. 2016 Apr 24;6(11):3583-3593 [PMID: 28725352]
  7. Philos Trans R Soc Lond B Biol Sci. 2019 Mar 18;374(1768):20180174 [PMID: 30966962]
  8. PLoS One. 2020 Jan 15;15(1):e0226087 [PMID: 31940310]
  9. Nat Commun. 2017 Jul 14;8:16101 [PMID: 28706247]
  10. Science. 2020 Sep 25;369(6511):1621-1625 [PMID: 32973027]
  11. Ecol Lett. 2015 Mar;18(3):221-35 [PMID: 25522778]
  12. Proc Biol Sci. 2019 Mar 13;286(1898):20190235 [PMID: 30836872]
  13. Nat Commun. 2020 Jul 3;11(1):3357 [PMID: 32620857]
  14. Sci Rep. 2020 Aug 7;10(1):13388 [PMID: 32770015]
  15. Science. 2011 Nov 4;334(6056):652-5 [PMID: 22053045]
  16. Proc Biol Sci. 2021 Apr 14;288(1948):20210054 [PMID: 33823664]
  17. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723): [PMID: 28483866]
  18. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3478-83 [PMID: 24550465]
  19. Glob Chang Biol. 2020 Feb;26(2):417-430 [PMID: 31670451]
  20. Sci Total Environ. 2020 May 1;715:136951 [PMID: 32014776]
  21. Ecology. 2019 Feb;100(2):e02578 [PMID: 30516273]
  22. Mar Environ Res. 2020 Dec;162:105192 [PMID: 33142110]
  23. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12202-12207 [PMID: 29087943]
  24. Mar Environ Res. 2021 Apr;166:105262 [PMID: 33513484]
  25. Sci Rep. 2020 Nov 9;10(1):19359 [PMID: 33168858]
  26. PLoS One. 2020 Mar 9;15(3):e0229927 [PMID: 32150586]
  27. Rev Fish Biol Fish. 2022;32(1):39-63 [PMID: 34566277]
  28. Glob Chang Biol. 2021 May;27(9):1859-1878 [PMID: 33577102]
  29. Proc Biol Sci. 2015 Sep 7;282(1814): [PMID: 26336179]
  30. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3647-8 [PMID: 19276126]
  31. Nature. 2018 Aug;560(7718):360-364 [PMID: 30111788]
  32. Sci Rep. 2020 Oct 5;10(1):16448 [PMID: 33020548]
  33. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723): [PMID: 28483865]
  34. Sci Adv. 2021 Oct;7(40):eabh0895 [PMID: 34597142]
  35. Nat Commun. 2019 Jun 14;10(1):2624 [PMID: 31201309]
  36. Ecology. 2011 Jan;92(1):228-39 [PMID: 21560693]
  37. Commun Biol. 2019 Nov 7;2:407 [PMID: 31728418]
  38. J Anim Ecol. 2016 Jan;85(1):85-96 [PMID: 26433114]
  39. Sci Rep. 2016 Aug 16;6:30607 [PMID: 27527612]
  40. Science. 2020 Jul 3;369(6499):65-70 [PMID: 32631888]
  41. Science. 2016 Apr 15;352(6283):338-42 [PMID: 27081069]
  42. Nature. 2020 Aug;584(7819):82-86 [PMID: 32760046]
  43. Nat Commun. 2020 Apr 6;11(1):1705 [PMID: 32249780]
  44. Trends Ecol Evol. 2020 Dec;35(12):1065-1067 [PMID: 32958366]
  45. Nat Commun. 2018 Apr 10;9(1):1324 [PMID: 29636482]
  46. Glob Chang Biol. 2022 Jun;28(11):3728-3744 [PMID: 35253321]
  47. Glob Chang Biol. 2019 Feb;25(2):459-472 [PMID: 30408274]
  48. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723): [PMID: 28483874]
  49. Ecol Appl. 2015 Sep;25(6):1534-45 [PMID: 26552262]
  50. Glob Chang Biol. 2017 Mar;23(3):1095-1108 [PMID: 27612326]
  51. PLoS One. 2018 Oct 24;13(10):e0206319 [PMID: 30356300]
  52. Nature. 2010 Apr 29;464(7293):1334-7 [PMID: 20428168]
  53. Sci Rep. 2021 Mar 18;11(1):6235 [PMID: 33737519]
  54. Sci Rep. 2020 Apr 21;10(1):6678 [PMID: 32317685]
  55. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3835-40 [PMID: 19234117]

MeSH Term

Animals
Arctic Regions
Climate Change
Ecosystem
Fishes
Food Chain

Word Cloud

Created with Highcharts 10.0.0ECEsspeciesresponseschangeArcticdifferentECEecologicalimpactsclimatewarmingseveralecosystemmultipleextremeclimaticeventsBarentsSeafishperturbationsdiversityenvironmentallegacyeffectsriskmanagementmonitoringtrendpunctuatedrecord-breakingwarmyearslowseaiceconcentrationsnaturereversibilitymarinepoorlyunderstoodinvestigatesignaturesthreesuccessivebottomtemperaturemaximaconcomitantsurface20042017acrossspatialorganizationalscalesobservedcommunity-levelredistributionsconcurrentscalewholeThreegroupscharacterizedsetstraitsdescribingcapacitycopeshort-termreactedtimingintensityco-occurredfrequentlylargepredatorsincomingborealtaxapotentiallyaffectingfoodwebstructuresfunctionalacceleratinglong-termlevelhighlydiversifiedimpactingexpansiongeographicalshiftvaryingoneanotherdespitesimilarPastpotentiallaggedthresholdsinteractionsunderlyingpressureconstantlysetnewinitialconditionsdriveuniquesignatureresultshighlightcomplexityreactionsgiveprominencesourcesprocessuncertaintypredictionsimpactLong-termstudiescharacterizeverticalextentnecessarystatisticallylinkdemersalspatial-temporalpatternsfutureregularwillcrucialdetectearlysignalsunderstanddeterminismneedadaptmodelsbetterintegratestochasticitycomplexglobalSuccessiveleadimmediatelarge-scalediverseOceanheatwavesinterannualvariabilitypresspulseresponsedistribution

Similar Articles

Cited By (3)