Cortical reorganization of the glutamate synapse in the activity-based anorexia rat model: Impact on cognition.

Francesca Mottarlini, Giorgia Targa, Giorgia Bottan, Benedetta Tarenzi, Fabio Fumagalli, Lucia Caffino
Author Information
  1. Francesca Mottarlini: Department of Pharmacological and Biomolecular Sciences, Universit�� degli Studi di Milano, Milan, Italy. ORCID
  2. Giorgia Targa: Department of Pharmacological and Biomolecular Sciences, Universit�� degli Studi di Milano, Milan, Italy. ORCID
  3. Giorgia Bottan: Department of Pharmacological and Biomolecular Sciences, Universit�� degli Studi di Milano, Milan, Italy.
  4. Benedetta Tarenzi: Department of Pharmacological and Biomolecular Sciences, Universit�� degli Studi di Milano, Milan, Italy.
  5. Fabio Fumagalli: Department of Pharmacological and Biomolecular Sciences, Universit�� degli Studi di Milano, Milan, Italy. ORCID
  6. Lucia Caffino: Department of Pharmacological and Biomolecular Sciences, Universit�� degli Studi di Milano, Milan, Italy. ORCID

Abstract

Patients suffering from anorexia nervosa (AN) display altered neural activity, morphological, and functional connectivity in the fronto-striatal circuit. In addition, hypoglutamatergic transmission and aberrant excitability of the medial prefrontal cortex (mPFC) observed in AN patients might underpin cognitive deficits that fuel the vicious cycle of dieting behavior. To provide a molecular mechanism, we employed the activity-based anorexia (ABA) rat model, which combines the two hallmarks of AN (i.e., caloric restriction and intense physical exercise), to evaluate structural remodeling together with alterations in the glutamatergic signaling in the mPFC and their impact on temporal memory, as measured by the temporal order object recognition (TOOR) test. Our data indicate that the combination of caloric restriction and intense physical exercise altered the homeostasis of the glutamate synapse and reduced spine density in the mPFC. These events, paralleled by an impairment in recency discrimination in the TOOR test, are associated with the ABA endophenotype. Of note, after a 7-day recovery period, body weight was recovered and the mPFC structure normalized but ABA rats still exhibited reduced post-synaptic stability of AMPA and NMDA glutamate receptors associated with cognitive dysfunction. Taken together, these data suggest that the combination of reduced food intake and hyperactivity affects the homeostasis of the excitatory synapse in the mPFC contributing to maintain the aberrant behaviors observed in AN patients. Our findings, by identifying novel potential targets of AN, may contribute to more effectively direct the therapeutic interventions to ameliorate, at least, the cognitive effects of this psychopathology.

Keywords

References

  1. Am J Psychiatry. 1995 Jul;152(7):1073-4 [PMID: 7793446]
  2. J Neurochem. 2022 May;161(4):350-365 [PMID: 35257377]
  3. Cell Rep. 2016 Aug 23;16(8):2116-2128 [PMID: 27524619]
  4. Psychopharmacology (Berl). 2017 Feb;234(3):421-426 [PMID: 27909746]
  5. Neuroimage Clin. 2014 Apr 12;4:615-22 [PMID: 24936412]
  6. J Vis Exp. 2015 Oct 22;(105):e52927 [PMID: 26555618]
  7. Neuropharmacology. 2020 Sep 15;175:108161 [PMID: 32585251]
  8. J Psychiatry Neurosci. 2015 Sep;40(5):307-15 [PMID: 26107161]
  9. Behav Res Ther. 2015 Aug;71:131-8 [PMID: 26131915]
  10. Behav Brain Res. 2015 May 15;285:131-9 [PMID: 25315129]
  11. Front Behav Neurosci. 2014 Dec 09;8:410 [PMID: 25538579]
  12. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jan 3;80(Pt B):132-142 [PMID: 28259721]
  13. Horm Behav. 2013 Jul;64(2):399-410 [PMID: 23998681]
  14. J Comp Physiol Psychol. 1978 Dec;92(6):1074-83 [PMID: 225355]
  15. Cereb Cortex. 2021 May 10;31(6):2868-2885 [PMID: 33497440]
  16. Brain Res. 2006 May 23;1090(1):89-98 [PMID: 16677619]
  17. Methods Mol Biol. 2019;2011:297-314 [PMID: 31273706]
  18. BMC Psychiatry. 2016 Sep 08;16(1):316 [PMID: 27608679]
  19. Cereb Cortex. 2016 Jun;26(6):2574-89 [PMID: 25979087]
  20. Eur J Neurosci. 2011 Feb;33(4):705-16 [PMID: 21226775]
  21. PLoS One. 2013 May 10;8(5):e61108 [PMID: 23675408]
  22. Br J Pharmacol. 2020 Oct;177(19):4532-4547 [PMID: 32721055]
  23. Physiol Behav. 2008 Apr 22;94(1):121-35 [PMID: 18164737]
  24. Curr Top Behav Neurosci. 2011;6:229-50 [PMID: 21243479]
  25. Appetite. 2021 Dec 1;167:105599 [PMID: 34271078]
  26. Curr Opin Neurobiol. 2007 Jun;17(3):381-6 [PMID: 17498943]
  27. Neuroimage. 2007 Mar;35(1):214-21 [PMID: 17239617]
  28. Psychiatry Res. 2013 Sep 30;213(3):210-6 [PMID: 23856299]
  29. Int J Eat Disord. 2013 Nov;46(7):737-46 [PMID: 23853140]
  30. BMC Biol. 2020 Sep 14;18(1):118 [PMID: 32921313]
  31. Mol Neurobiol. 2017 Nov;54(9):7186-7193 [PMID: 27796754]
  32. Curr Psychiatry Rep. 2016 Feb;18(2):18 [PMID: 26797860]
  33. J Comp Physiol Psychol. 1967 Dec;64(3):414-21 [PMID: 6082873]
  34. Neurobiol Dis. 2019 Nov;131:104322 [PMID: 30423472]
  35. Nat Rev Neurosci. 2001 Dec;2(12):880-8 [PMID: 11733795]
  36. J Cell Biol. 2010 May 17;189(4):619-29 [PMID: 20457765]
  37. Psychol Med. 2011 Apr;41(4):829-38 [PMID: 20529417]
  38. Eur Child Adolesc Psychiatry. 2016 Nov;25(11):1149-1150 [PMID: 27770295]
  39. Biol Psychiatry. 2021 Dec 15;90(12):819-828 [PMID: 32892984]
  40. J Adolesc Health. 2017 Apr;60(4):431-437 [PMID: 27998700]
  41. Br J Pharmacol. 2017 Aug;174(16):2682-2695 [PMID: 28561272]
  42. Brain Struct Funct. 2020 Apr;225(3):1165 [PMID: 32006146]
  43. J Neurosci. 2007 Mar 14;27(11):2948-57 [PMID: 17360918]
  44. JAMA Psychiatry. 2018 Oct 1;75(10):1071-1080 [PMID: 30027213]
  45. J Neurosci Methods. 1980 Dec;3(2):129-49 [PMID: 6110810]
  46. Cereb Cortex. 2004 Aug;14(8):922-32 [PMID: 15084496]
  47. Curr Opin Neurobiol. 2012 Jun;22(3):383-8 [PMID: 21963169]
  48. Brain Struct Funct. 2014 Nov;219(6):1935-45 [PMID: 23959245]
  49. Hum Brain Mapp. 2014 Feb;35(2):483-91 [PMID: 23033154]
  50. J Eat Disord. 2019 Jun 20;7:22 [PMID: 31249687]
  51. Am J Psychiatry. 2011 Jan;168(1):55-64 [PMID: 21123315]
  52. Physiol Behav. 2019 Apr 1;202:1-7 [PMID: 30682332]
  53. Nat Med. 2010 Dec;16(12):1382-3 [PMID: 21135849]
  54. Eur Neuropsychopharmacol. 2015 Oct;25(10):1832-41 [PMID: 26004981]
  55. Curr Protoc Neurosci. 2014 Apr 10;67:9.47.1-9.47.11 [PMID: 24723321]
  56. J Cell Sci. 2012 Mar 15;125(Pt 6):1401-6 [PMID: 22328515]
  57. Nutrients. 2019 Aug 15;11(8): [PMID: 31443192]
  58. Pharmacol Ther. 2021 Jan;217:107667 [PMID: 32858054]
  59. PLoS One. 2016 Nov 18;11(11):e0166756 [PMID: 27861553]
  60. J Psychiatr Res. 2017 Apr;87:1-7 [PMID: 27978457]
  61. Transl Psychiatry. 2019 Jun 4;9(1):159 [PMID: 31164627]
  62. Brain Res. 2017 Jan 1;1654(Pt B):102-115 [PMID: 26779892]
  63. Cortex. 2015 Jan;62:109-18 [PMID: 24703713]
  64. Neuropsychopharmacology. 2016 May;41(6):1560-8 [PMID: 26462619]
  65. Front Behav Neurosci. 2015 Feb 27;9:46 [PMID: 25774128]
  66. Front Nutr. 2019 May 21;6:69 [PMID: 31165073]
  67. Neuron. 2005 Jun 2;46(5):745-60 [PMID: 15924861]
  68. Arch Gen Psychiatry. 2011 Jul;68(7):724-31 [PMID: 21727255]
  69. Eur J Neurosci. 2017 Oct;46(7):2297-2307 [PMID: 28833732]
  70. Int J Eat Disord. 2013 Nov;46(7):701-8 [PMID: 23818167]
  71. Int J Eat Disord. 2013 May;46(4):289-301 [PMID: 23354987]
  72. Eur Child Adolesc Psychiatry. 2020 Feb;29(2):217-226 [PMID: 31114967]
  73. Neuropsychopharmacology. 2017 Nov;42(12):2292-2300 [PMID: 28322236]
  74. J Neurosci. 1992 Jul;12(7):2685-705 [PMID: 1613552]
  75. Eur Child Adolesc Psychiatry. 2016 Aug;25(8):903-18 [PMID: 26754944]
  76. Int J Eat Disord. 2019 Nov;52(11):1251-1262 [PMID: 31456239]
  77. Transl Psychiatry. 2020 May 4;10(1):126 [PMID: 32366823]
  78. Int J Eat Disord. 2013 Jul;46(5):425-32 [PMID: 23658085]
  79. Neuroreport. 2004 Mar 1;15(3):549-53 [PMID: 15094521]
  80. J Neurosci. 2016 Feb 10;36(6):1996-2006 [PMID: 26865622]
  81. Nutrients. 2020 Nov 28;12(12): [PMID: 33260714]
  82. J Neurosci. 2000 Jun 15;20(12):4524-34 [PMID: 10844022]

MeSH Term

Animals
Anorexia
Cognition
Glutamic Acid
Humans
Prefrontal Cortex
Rats
Receptors, N-Methyl-D-Aspartate
Synapses

Chemicals

Receptors, N-Methyl-D-Aspartate
Glutamic Acid

Word Cloud

Created with Highcharts 10.0.0ANmPFCanorexiasynapsecognitiveactivity-basedABAglutamatereducedalteredaberrantprefrontalcortexobservedpatientsratcaloricrestrictionintensephysicalexercisetogetherglutamatergictemporalTOORtestdatacombinationhomeostasisspineassociatedcognitionPatientssufferingnervosadisplayneuralactivitymorphologicalfunctionalconnectivityfronto-striatalcircuitadditionhypoglutamatergictransmissionexcitabilitymedialmightunderpindeficitsfuelviciouscycledietingbehaviorprovidemolecularmechanismemployedmodelcombinestwohallmarksieevaluatestructuralremodelingalterationssignalingimpactmemorymeasuredorderobjectrecognitionindicatedensityeventsparalleledimpairmentrecencydiscriminationendophenotypenote7-dayrecoveryperiodbodyweightrecoveredstructurenormalizedratsstillexhibitedpost-synapticstabilityAMPANMDAreceptorsdysfunctionTakensuggestfoodintakehyperactivityaffectsexcitatorycontributingmaintainbehaviorsfindingsidentifyingnovelpotentialtargetsmaycontributeeffectivelydirecttherapeuticinterventionsameliorateleasteffectspsychopathologyCorticalreorganizationmodel:Impactadolescencedendritic

Similar Articles

Cited By