Jusanin, a New Flavonoid from with an In Silico Inhibitory Potential against the SARS-CoV-2 Main Protease.

Yerlan M Suleimen, Rani A Jose, Raigul N Suleimen, Christoph Arenz, Margarita Y Ishmuratova, Suzanne Toppet, Wim Dehaen, Bshra A Alsfouk, Eslam B Elkaeed, Ibrahim H Eissa, Ahmed M Metwaly
Author Information
  1. Yerlan M Suleimen: The International Centre for Interdisciplinary Solutions on Antibiotics and Secondary Metabolites, Republican Collection of Microorganisms, Nur-Sultan 010000, Kazakhstan. ORCID
  2. Rani A Jose: Molecular Design & Synthesis, Department of Chemistry, Catholic University of Leuven, B-3001 Leuven, Belgium.
  3. Raigul N Suleimen: Department of Technical Physics, Faculty of Physics and Technology, L.N. Gumilyov Eurasian National University, Nur-Sultan 010010, Kazakhstan.
  4. Christoph Arenz: Institut für Chemie der Humboldt-Universität zu, D-12489 Berlin, Germany. ORCID
  5. Margarita Y Ishmuratova: Department of Botany, E.A. Buketov Karaganda University, Karaganda 100024, Kazakhstan. ORCID
  6. Suzanne Toppet: Molecular Design & Synthesis, Department of Chemistry, Catholic University of Leuven, B-3001 Leuven, Belgium.
  7. Wim Dehaen: Molecular Design & Synthesis, Department of Chemistry, Catholic University of Leuven, B-3001 Leuven, Belgium. ORCID
  8. Bshra A Alsfouk: Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia. ORCID
  9. Eslam B Elkaeed: Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia. ORCID
  10. Ibrahim H Eissa: Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. ORCID
  11. Ahmed M Metwaly: Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. ORCID

Abstract

A new flavonoid, Jusanin, () has been isolated from the aerial parts of . The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between and , the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between and . Accordingly, molecular docking studies of against the target enzyme have been achieved and showed that bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the M-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (), methyl-3-[S-hydroxyprenyl]-cumarate (), and β-sitosterol ().

Keywords

References

  1. Sci Rep. 2021 Feb 19;11(1):4240 [PMID: 33608582]
  2. Nucleosides Nucleotides Nucleic Acids. 2021;40(8):798-807 [PMID: 34323642]
  3. J Ethnopharmacol. 2019 Jul 15;239:111942 [PMID: 31075380]
  4. Arch Pharm (Weinheim). 2019 Nov;352(11):e1900123 [PMID: 31463953]
  5. Molecules. 2022 Feb 11;27(4): [PMID: 35209006]
  6. Appl Biochem Biotechnol. 2017 Aug;182(4):1675-1693 [PMID: 28236195]
  7. Molecules. 2019 Oct 30;24(21): [PMID: 31671631]
  8. Chem Pharm Bull (Tokyo). 1983 Jan;31(1):352-5 [PMID: 6857760]
  9. Bioorg Chem. 2021 Sep;114:105105 [PMID: 34175720]
  10. J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 [PMID: 23341755]
  11. Pharmacol Rev. 2013 Dec 31;66(1):334-95 [PMID: 24381236]
  12. Molecules. 2022 Jan 27;27(3): [PMID: 35164122]
  13. J Comput Chem. 2007 Sep;28(12):1936-42 [PMID: 17450564]
  14. Molecules. 2021 Oct 12;26(20): [PMID: 34684735]
  15. Spectrochim Acta A Mol Biomol Spectrosc. 2011 Aug;79(3):443-50 [PMID: 21514212]
  16. Molecules. 2020 Dec 29;26(1): [PMID: 33383976]
  17. J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80 [PMID: 12444722]
  18. Phytochemistry. 2003 Feb;62(3):389-98 [PMID: 12620352]
  19. Sci Rep. 2021 Feb 18;11(1):4049 [PMID: 33603068]
  20. Bioorg Chem. 2021 Oct;115:105206 [PMID: 34339975]
  21. RSC Adv. 2018 Dec 5;8(71):40529-40543 [PMID: 35557880]
  22. Bioorg Chem. 2020 Dec;105:104380 [PMID: 33128967]
  23. Saudi J Biol Sci. 2021 Oct;28(10):5823-5832 [PMID: 34588897]
  24. Curr Opin Struct Biol. 2002 Apr;12(2):190-6 [PMID: 11959496]
  25. J Chem Theory Comput. 2016 Jan 12;12(1):405-13 [PMID: 26631602]
  26. Bioorg Chem. 2017 Apr;71:192-200 [PMID: 28228228]
  27. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  28. Mol Divers. 2019 May;23(2):381-392 [PMID: 30294757]
  29. Front Mol Biosci. 2020 Sep 29;7:556481 [PMID: 33134310]
  30. Drug Discov Today. 2019 May;24(5):1157-1165 [PMID: 30890362]
  31. Tetrahedron Lett. 2014 Jun 11;55(24):3478-3481 [PMID: 27708462]
  32. J Mol Graph. 1994 Mar;12(1):3-13 [PMID: 8011599]
  33. Bioorg Chem. 2021 Feb;107:104532 [PMID: 33334586]
  34. Protein Sci. 2017 Jun;26(6):1098-1104 [PMID: 28370507]
  35. Analyst. 2021 Jul 26;146(15):4737-4743 [PMID: 34212943]
  36. J Comput Chem. 2009 Jul 30;30(10):1545-614 [PMID: 19444816]
  37. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  38. Biomolecules. 2021 Mar 19;11(3): [PMID: 33808721]
  39. Bioorg Chem. 2020 Oct;103:104233 [PMID: 32882440]
  40. Molecules. 2019 May 14;24(10): [PMID: 31091790]
  41. Phytochem Lett. 2014 Feb;7:1-5 [PMID: 27708743]
  42. J Comput Chem. 2012 Dec 5;33(31):2451-68 [PMID: 22821581]
  43. Front Chem. 2021 May 04;9:661230 [PMID: 34017819]
  44. Molecules. 2021 May 10;26(9): [PMID: 34068579]
  45. Bioorg Med Chem. 2021 Jan 1;29:115872 [PMID: 33214036]
  46. Chem Nat Compd. 2022;58(4):766-769 [PMID: 35992017]
  47. Nat Prod Res. 2016 Sep;30(17):1950-5 [PMID: 26404704]
  48. J Med Chem. 2000 Oct 19;43(21):3867-77 [PMID: 11052792]
  49. Front Chem. 2019 Feb 18;7:9 [PMID: 30834240]

Grants

  1. OR11465530/Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan
  2. AP08051842/Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan
  3. PNURSP2022R142/Princess Nourah bint Abdulrahman University

MeSH Term

Animals
Humans
Male
Rats
Artemisia
Binding Sites
Catalytic Domain
Coronavirus 3C Proteases
COVID-19
Density Functional Theory
Flavonoids
Lethal Dose 50
Molecular Conformation
Molecular Docking Simulation
Molecular Dynamics Simulation
SARS-CoV-2
Skin

Chemicals

3C-like proteinase, SARS-CoV-2
Coronavirus 3C Proteases
Flavonoids
jusanin

Word Cloud

Created with Highcharts 10.0.0JusaninmolecularSARS-CoV-2similaritystudiesnewindicatedenergyflavonoidisolatedusingdifferentsilicoco-crystallizedmainproteaseDFTdockingbindingADMETadditiontoxicitydynamicaerialpartschemicalstructureelucidated1D2DNMRHR-Msspectroscopicmethods52'4'-trihydroxy-675'-trimethoxyflavonenatureinhibitionpotentialestimatedtechniquesFirstlyfingerprintconductedligandseightessentialproteinsligandPDBID:6W63confirmobtainedresultsstudycarriedtotalHOMOLUMOgapdipolemomentAccordinglytargetenzymeachievedshowedbondedcorrectlyprotein'sactivesite-1954Kcal/molAdditionallyevaluationsevenmodelsprecededgeneralsafetylikenessdrugFinallydynamicssimulationappliedinvestigatebehaviorM-Jusanincomplexconfirmedcorrect100ns1threemetabolitesidentifiedсapillartemisinmethyl-3-[S-hydroxyprenyl]-cumarateβ-sitosterolNewFlavonoidSilicoInhibitoryPotentialMainProteaseArtemisiacommutataCOVID-19simulations

Similar Articles

Cited By