Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries.

Yuemin Bian, Xiang-Qun Xie
Author Information
  1. Yuemin Bian: Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA. ORCID
  2. Xiang-Qun Xie: Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.

Abstract

Design and generation of high-quality target- and scaffold-specific small molecules is an important strategy for the discovery of unique and potent bioactive drug molecules. To achieve this goal, authors have developed the deep-learning molecule generation model (DeepMGM) and applied it for the de novo molecular generation of scaffold-focused small-molecule libraries. In this study, a recurrent neural network (RNN) using long short-term memory (LSTM) units was trained with drug-like molecules to result in a general model (g-DeepMGM). Sampling practices on indole and purine scaffolds illustrate the feasibility of creating scaffold-focused chemical libraries based on machine intelligence. Subsequently, a target-specific model (t-DeepMGM) for cannabinoid receptor 2 (CB2) was constructed following the transfer learning process of known CB2 ligands. Sampling outcomes can present similar properties to the reported active molecules. Finally, a discriminator was trained and attached to the DeepMGM to result in an in silico molecular design-test circle. Medicinal chemistry synthesis and biological validation was performed to further investigate the generation outcome, showing that XIE9137 was identified as a potential allosteric modulator of CB2. This study demonstrates how recent progress in deep learning intelligence can benefit drug discovery, especially in de novo molecular design and chemical library generation.

Keywords

References

  1. Drug Discov Today Technol. 2004 Dec;1(4):337-41 [PMID: 24981612]
  2. J Cheminform. 2019 Dec 3;11(1):74 [PMID: 33430938]
  3. Eur J Pharmacol. 2005 Sep 27;520(1-3):164-71 [PMID: 16153638]
  4. ACS Med Chem Lett. 2020 Jul 14;11(8):1496-1505 [PMID: 32832015]
  5. Nat Commun. 2020 Jan 3;11(1):10 [PMID: 31900408]
  6. AAPS J. 2018 Mar 30;20(3):58 [PMID: 29603063]
  7. ACS Cent Sci. 2018 Jan 24;4(1):120-131 [PMID: 29392184]
  8. J Med Chem. 2020 Aug 27;63(16):8809-8823 [PMID: 32134646]
  9. Cell. 2020 Feb 20;180(4):645-654.e13 [PMID: 32004460]
  10. Biomolecules. 2021 Jun 11;11(6): [PMID: 34208096]
  11. Nature. 2018 Jul;559(7714):377-381 [PMID: 30022133]
  12. JAMA. 2020 Mar 3;323(9):844-853 [PMID: 32125404]
  13. Front Pharmacol. 2020 Apr 17;11:269 [PMID: 32362822]
  14. J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80 [PMID: 12444722]
  15. Future Med Chem. 2012 Feb;4(2):187-204 [PMID: 22300098]
  16. Nat Biotechnol. 2020 Feb;38(2):143-145 [PMID: 32001834]
  17. Eur J Med Chem. 2020 Nov 15;206:112690 [PMID: 32818870]
  18. Pharmacol Biochem Behav. 2008 Oct;90(4):501-11 [PMID: 18584858]
  19. Mol Pharm. 2018 Oct 1;15(10):4361-4370 [PMID: 30114914]
  20. Mol Pharm. 2020 Jul 6;17(7):2628-2637 [PMID: 32422053]
  21. Life Sci. 1995;56(23-24):1949-55 [PMID: 7776818]
  22. Environ Sci Technol. 2020 Oct 6;54(19):12202-12213 [PMID: 32857505]
  23. Mol Pharm. 2019 Nov 4;16(11):4472-4484 [PMID: 31580683]
  24. Angew Chem Int Ed Engl. 2018 Jun 11;57(24):6978-6980 [PMID: 29701305]
  25. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  26. J Cheminform. 2012 Sep 18;4(1):22 [PMID: 22989151]
  27. Curr Opin Chem Biol. 2010 Jun;14(3):347-61 [PMID: 20303320]
  28. J Chem Inf Model. 2005 Jan-Feb;45(1):177-82 [PMID: 15667143]
  29. Mol Pharm. 2019 Jun 3;16(6):2605-2615 [PMID: 31013097]
  30. J Pharmacol Exp Ther. 2001 Feb;296(2):420-5 [PMID: 11160626]
  31. J Med Chem. 2013 Mar 14;56(5):2045-58 [PMID: 23406429]
  32. Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940 [PMID: 30398643]
  33. Sci Adv. 2018 Jul 25;4(7):eaap7885 [PMID: 30050984]
  34. Nat Rev Drug Discov. 2009 Jan;8(1):41-54 [PMID: 19116626]
  35. Comb Chem High Throughput Screen. 2004 Aug;7(5):473-94 [PMID: 15320713]
  36. J Med Chem. 2012 Nov 26;55(22):9973-87 [PMID: 23072339]
  37. Science. 2019 Jan 11;363(6423): [PMID: 30498165]
  38. J Cheminform. 2019 Jan 17;11(1):5 [PMID: 30656426]
  39. Mol Inform. 2018 Jan;37(1-2): [PMID: 29095571]
  40. J Mol Model. 2021 Feb 4;27(3):71 [PMID: 33543405]
  41. Handb Exp Pharmacol. 2005;(168):299-325 [PMID: 16596779]
  42. J Chem Inf Model. 2020 Apr 27;60(4):1983-1995 [PMID: 32195587]
  43. J Cheminform. 2009 Jun 10;1(1):8 [PMID: 20298526]
  44. Nature. 2020 Jul;583(7815):237-241 [PMID: 32641813]
  45. J Med Chem. 1988 Dec;31(12):2235-46 [PMID: 2848124]
  46. Nat Chem. 2012 Jan 24;4(2):90-8 [PMID: 22270643]
  47. Drug Discov Today. 2020 Oct;25(10):1807-1821 [PMID: 32801051]
  48. Mol Pharm. 2019 Nov 4;16(11):4451-4460 [PMID: 31589460]
  49. Br J Pharmacol. 1999 Feb;126(3):665-72 [PMID: 10188977]
  50. Expert Opin Drug Discov. 2015 Jul;10(7):781-90 [PMID: 25959748]
  51. J Leukoc Biol. 2005 Dec;78(6):1192-7 [PMID: 16204639]
  52. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]
  53. Acta Pharmacol Sin. 2019 Mar;40(3):374-386 [PMID: 30202014]
  54. J Cheminform. 2020 Jan 8;12(1):2 [PMID: 33431006]
  55. Science. 2019 Aug 9;365(6453): [PMID: 31395756]
  56. Mol Inform. 2018 Jan;37(1-2): [PMID: 29319225]

Grants

  1. W81XWH-16-1-0490/United States Department of Defense
  2. R01 DA052329/NIDA NIH HHS
  3. P30 DA035778/NIDA NIH HHS
  4. R56 AG074951/NIA NIH HHS
  5. R01DA052329-01A1/NIDA NIH HHS

MeSH Term

Artificial Intelligence
Cannabinoids
Deep Learning
Drug Design
Neural Networks, Computer
Small Molecule Libraries

Chemicals

Cannabinoids
Small Molecule Libraries

Word Cloud

Created with Highcharts 10.0.0generationCB2moleculesmodeldiscoverydrugDeepMGMmoleculardeep-learningmoleculedenovoscaffold-focusedlibrariesstudyrecurrentneuralnetworktrainedresultSamplingchemicalintelligencecannabinoidreceptor2learningcanallostericmodulatorDesignhigh-qualitytarget-scaffold-specificsmallimportantstrategyuniquepotentbioactiveachievegoalauthorsdevelopedappliedsmall-moleculeRNNusinglongshort-termmemoryLSTMunitsdrug-likegeneralg-DeepMGMpracticesindolepurinescaffoldsillustratefeasibilitycreatingbasedmachineSubsequentlytarget-specifict-DeepMGMconstructedfollowingtransferprocessknownligandsoutcomespresentsimilarpropertiesreportedactiveFinallydiscriminatorattachedsilicodesign-testcircleMedicinalchemistrysynthesisbiologicalvalidationperformedinvestigateoutcomeshowingXIE9137identifiedpotentialdemonstratesrecentprogressdeepbenefitespeciallydesignlibraryArtificialIntelligentDeepLearningMolecularGenerativeModelingScaffold-FocusedCannabinoidTarget-SpecificSmall-MoleculeSublibrariesgenerativemodelingnegativeNAM

Similar Articles

Cited By (9)