A semi-parametric Bayesian model for semi-continuous longitudinal data.

Junting Ren, Susan Tapert, Chun Chieh Fan, Wesley K Thompson
Author Information
  1. Junting Ren: Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA. ORCID
  2. Susan Tapert: Department of Psychiatry, University of California San Diego, La Jolla, California, USA.
  3. Chun Chieh Fan: Population Neuroscience and Genetics Lab, University of California San Diego, La Jolla, California, USA.
  4. Wesley K Thompson: Population Neuroscience and Genetics Lab, University of California San Diego, La Jolla, California, USA.

Abstract

Semi-continuous data present challenges in both model fitting and interpretation. Parametric distributions may be inappropriate for extreme long right tails of the data. Mean effects of covariates, susceptible to extreme values, may fail to capture relevant information for most of the sample. We propose a two-component semi-parametric Bayesian mixture model, with the discrete component captured by a probability mass (typically at zero) and the continuous component of the density modeled by a mixture of B-spline densities that can be flexibly fit to any data distribution. The model includes random effects of subjects to allow for application to longitudinal data. We specify prior distributions on parameters and perform model inference using a Markov chain Monte Carlo (MCMC) Gibbs-sampling algorithm programmed in R. Statistical inference can be made for multiple quantiles of the covariate effects simultaneously providing a comprehensive view. Various MCMC sampling techniques are used to facilitate convergence. We demonstrate the performance and the interpretability of the model via simulations and analyses on the National Consortium on Alcohol and Neurodevelopment in Adolescence study (NCANDA) data on Alcohol binge drinking.

Keywords

References

  1. J Stud Alcohol. 1998 Jul;59(4):427-38 [PMID: 9647425]
  2. Stat Med. 2013 Oct 30;32(24):4306-18 [PMID: 23670952]
  3. Stat Med. 2013 Jan 30;32(2):335-46 [PMID: 22833388]
  4. Genetics. 2007 Jul;176(3):1855-64 [PMID: 17507680]
  5. Neuropsychopharmacology. 2021 Jan;46(1):131-142 [PMID: 32541809]
  6. Cereb Cortex. 2022 Jun 7;32(12):2611-2620 [PMID: 34729592]
  7. Am J Hum Genet. 2021 May 6;108(5):825-839 [PMID: 33836139]
  8. J Stud Alcohol Drugs. 2015 Nov;76(6):895-908 [PMID: 26562597]
  9. BMC Med Res Methodol. 2019 Mar 6;19(1):46 [PMID: 30841848]
  10. J Health Econ. 2010 Jan;29(1):110-23 [PMID: 20015560]
  11. Comput Stat Data Anal. 2009 Jan 15;53(3):699-706 [PMID: 19763231]
  12. Stat Methods Med Res. 2019 May;28(5):1412-1426 [PMID: 29451088]
  13. J Health Econ. 2001 Jul;20(4):461-94 [PMID: 11469231]
  14. Biometrics. 1995 Dec;51(4):1570-8 [PMID: 8589241]
  15. G3 (Bethesda). 2015 Aug 18;5(10):2113-26 [PMID: 26290569]
  16. Biostatistics. 2009 Apr;10(2):374-89 [PMID: 19136448]
  17. Stat Methods Med Res. 2016 Feb;25(1):133-52 [PMID: 22474003]
  18. Bioinformatics. 2016 Sep 1;32(17):2611-7 [PMID: 27187200]
  19. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  20. Biostatistics. 2005 Jan;6(1):93-109 [PMID: 15618530]
  21. J Pharmacokinet Pharmacodyn. 2016 Feb;43(1):111-22 [PMID: 26660913]
  22. Biometrics. 2008 Mar;64(1):54-63 [PMID: 17573864]
  23. Stat Med. 2016 Mar 15;35(6):883-94 [PMID: 26403805]

Grants

  1. MH120025/NIH HHS
  2. U24 AA021697/NIAAA NIH HHS
  3. U01 AA021692/NIAAA NIH HHS
  4. 5U24AA021695-09/NIH HHS
  5. U24 AA021695/NIAAA NIH HHS
  6. R01 MH122688/NIMH NIH HHS
  7. 5U24AA021697-09/NIH HHS
  8. RF1 MH120025/NIMH NIH HHS
  9. MH122688/NIH HHS

MeSH Term

Algorithms
Bayes Theorem
Humans
Markov Chains
Models, Statistical
Monte Carlo Method

Word Cloud

Created with Highcharts 10.0.0datamodeleffectssemi-parametricBayesianlongitudinaldistributionsmayextrememixturecomponentB-splinecaninferenceMarkovchainMonteCarloMCMCsemi-continuousSemi-continuouspresentchallengesfittinginterpretationParametricinappropriatelongrighttailsMeancovariatessusceptiblevaluesfailcapturerelevantinformationsampleproposetwo-componentdiscretecapturedprobabilitymasstypicallyzerocontinuousdensitymodeleddensitiesflexiblyfitdistributionincludesrandomsubjectsallowapplicationspecifypriorparametersperformusingGibbs-samplingalgorithmprogrammedRStatisticalmademultiplequantilescovariatesimultaneouslyprovidingcomprehensiveviewVarioussamplingtechniquesusedfacilitateconvergencedemonstrateperformanceinterpretabilityviasimulationsanalysesNationalConsortiumAlcoholNeurodevelopmentAdolescencestudyNCANDAalcoholbingedrinking

Similar Articles

Cited By (2)