Global Sensitivity Analysis with Mixtures: A Generalized Functional ANOVA Approach.

Emanuele Borgonovo, Genyuan Li, John Barr, Elmar Plischke, Herschel Rabitz
Author Information
  1. Emanuele Borgonovo: Bocconi Institute for Data Science and Analytics (BIDSA) and Department of Decision Sciences, Bocconi University, Via Roentgen 1, Milan, 20836, Italy. ORCID
  2. Genyuan Li: Department of Chemistry, Princeton University, Princeton, NJ, USA. ORCID
  3. John Barr: Institut f��r Endlagerforschung, Technische Universit��t Clausthal, Adolph-Roemer-Str. 2a, Clausthal-Zellerfeld, 38678, Germany. ORCID
  4. Elmar Plischke: Institut f��r Endlagerforschung, Technische Universit��t Clausthal, Adolph-Roemer-Str. 2a, Clausthal-Zellerfeld, 38678, Germany. ORCID
  5. Herschel Rabitz: Institut f��r Endlagerforschung, Technische Universit��t Clausthal, Adolph-Roemer-Str. 2a, Clausthal-Zellerfeld, 38678, Germany. ORCID

Abstract

This work investigates aspects of the global sensitivity analysis of computer codes when alternative plausible distributions for the model inputs are available to the analyst. Analysts may decide to explore results under each distribution or to aggregate the distributions, assigning, for instance, a mixture. In the first case, we lose uniqueness of the sensitivity measures, and in the second case, we lose independence even if the model inputs are independent under each of the assigned distributions. Removing the unique distribution assumption impacts the mathematical properties at the basis of variance-based sensitivity analysis and has consequences on result interpretation as well. We analyze in detail the technical aspects. From this investigation, we derive corresponding recommendations for the risk analyst. We show that an approach based on the generalized functional ANOVA expansion remains theoretically grounded in the presence of a mixture distribution. Numerically, we base the construction of the generalized function ANOVA effects on the diffeomorphic modulation under observable response preserving homotopy regression. Our application addresses the calculation of variance-based sensitivity measures for the well-known Nordhaus' DICE model, when its inputs are assigned a mixture distribution. A discussion of implications for the risk analyst and future research perspectives closes the work.

Keywords

References

  1. Science. 1990 Dec 7;250(4986):1359-64 [PMID: 2255906]
  2. Risk Anal. 2020 Jan;40(1):153-168 [PMID: 28873257]
  3. Risk Anal. 2001 Oct;21(5):807-19 [PMID: 11798118]
  4. Risk Anal. 2010 Mar;30(3):377-80 [PMID: 20487398]
  5. Risk Anal. 2002 Jun;22(3):539-45 [PMID: 12088232]
  6. Risk Anal. 2005 Dec;25(6):1511-29 [PMID: 16506979]
  7. Risk Anal. 2010 Mar;30(3):354-60; author reply 381-4 [PMID: 19919552]
  8. Risk Anal. 2012 Nov;32(11):1823-33 [PMID: 22385051]
  9. Risk Anal. 2004 Jun;24(3):573-85 [PMID: 15209931]
  10. Risk Anal. 2013 Jan;33(1):121-33 [PMID: 22831561]
  11. J Phys Chem A. 2010 May 20;114(19):6022-32 [PMID: 20420436]
  12. Risk Anal. 2004 Jun;24(3):515-20 [PMID: 15209926]
  13. Risk Anal. 2002 Jun;22(3):591-622 [PMID: 12088236]
  14. Risk Anal. 2014 Feb;34(2):271-93 [PMID: 24111855]
  15. Risk Anal. 2010 Mar;30(3):369-70 [PMID: 20487396]
  16. Risk Anal. 2002 Jun;22(3):579-90 [PMID: 12088235]
  17. Risk Anal. 2006 Oct;26(5):1349-61 [PMID: 17054536]

Word Cloud

Created with Highcharts 10.0.0sensitivityanalysisdistributionsdistributionmixturemodelinputsanalystriskANOVAaspectscaselosemeasuresassignedvariance-basedgeneralizedregressionworkinvestigatesglobalcomputercodesalternativeplausibleavailableAnalystsmaydecideexploreresultsaggregateassigninginstancefirstuniquenesssecondindependenceevenindependentRemovinguniqueassumptionimpactsmathematicalpropertiesbasisconsequencesresultinterpretationwellanalyzedetailtechnicalinvestigationderivecorrespondingrecommendationsshowapproachbasedfunctionalexpansionremainstheoreticallygroundedpresenceNumericallybaseconstructionfunctioneffectsdiffeomorphicmodulationobservableresponsepreservinghomotopyapplicationaddressescalculationwell-knownNordhaus'DICEdiscussionimplicationsfutureresearchperspectivesclosesthe workGlobalSensitivityAnalysisMixtures:GeneralizedFunctionalApproachD-MORPHuncertainty

Similar Articles

Cited By