Detecting pattern transitions in psychological time series - A validation study on the Pattern Transition Detection Algorithm (PTDA).

Kathrin Viol, Helmut Schöller, Andreas Kaiser, Clemens Fartacek, Wolfgang Aichhorn, Günter Schiepek
Author Information
  1. Kathrin Viol: Institute of Synergetics and Psychotherapy Research, University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria. ORCID
  2. Helmut Schöller: Institute of Synergetics and Psychotherapy Research, University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria.
  3. Andreas Kaiser: Institute for Clinical Psychology, University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria.
  4. Clemens Fartacek: Institute of Synergetics and Psychotherapy Research, University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria.
  5. Wolfgang Aichhorn: Institute of Synergetics and Psychotherapy Research, University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria.
  6. Günter Schiepek: Institute of Synergetics and Psychotherapy Research, University Hospital of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University, Salzburg, Austria.

Abstract

With the increasing use of real-time monitoring procedures in clinical practice, psychological time series become available to researchers and practitioners. An important interest concerns the identification of pattern transitions which are characteristic features of psychotherapeutic change. Change Point Analysis (CPA) is an established method to identify the point where the mean and/or variance of a time series change, but changes of other and more complex features cannot be detected by this method. In this study, an extension of the CPA, the Pattern Transition Detection Algorithm (PTDA), is optimized and validated for psychological time series with complex pattern transitions. The algorithm uses the convergent information of the CPA and other methods like Recurrence Plots, Time Frequency Distributions, and Dynamic Complexity. These second level approaches capture different aspects of the primary time series. The data set for testing the PTDA (300 time series) is created by an instantaneous control parameter shift of a simulation model of psychotherapeutic change during the simulation runs. By comparing the dispersion of random change points with the real change points, the PTDA determines if the transition point is significant. The PTDA reduces the rate of false negative and false positive results of the CPA below 5% and generalizes its application to different types of pattern transitions. RQA quantifiers also can be used for the identification of nonstationary transitions in time series which was illustrated by using Determinism and Entropy. The PTDA can be easily used with Matlab and is freely available at Matlab File Exchange (https://www.mathworks.com/matlabcentral/fileexchange/80380-pattern-transition-detection-algorithm-ptda).

References

  1. Annu Rev Clin Psychol. 2007;3:1-27 [PMID: 17716046]
  2. Nonlinear Dynamics Psychol Life Sci. 2019 Jan;23(1):79-112 [PMID: 30557137]
  3. Front Psychol. 2020 May 20;11:788 [PMID: 32508701]
  4. IEEE Trans Biomed Eng. 2011 Feb;58(2):339-47 [PMID: 20693104]
  5. Front Psychol. 2018 Nov 15;9:2226 [PMID: 30524336]
  6. Psychother Res. 2020 Apr;30(4):520-531 [PMID: 31256713]
  7. Front Psychol. 2020 Aug 26;11:1970 [PMID: 32982834]
  8. Dev Psychol. 2009 Jan;45(1):260-71 [PMID: 19210007]
  9. Front Psychol. 2017 Apr 24;8:379 [PMID: 28484401]
  10. Front Psychol. 2016 May 03;7:604 [PMID: 27199837]
  11. Front Psychol. 2016 Nov 22;7:1835 [PMID: 27920748]
  12. Behav Res Ther. 2005 Jun;43(6):703-14 [PMID: 15890164]
  13. Epilepsy Behav. 2018 Nov;88:5-14 [PMID: 30212726]
  14. J Consult Clin Psychol. 2020 Feb;88(2):119-127 [PMID: 31894994]
  15. Psychother Psychosom. 2016;85(2):114-6 [PMID: 26821231]
  16. Phys Rev Lett. 2002 Apr 29;88(17):174102 [PMID: 12005759]
  17. Clin Psychol Rev. 2007 Jul;27(6):715-23 [PMID: 17316941]
  18. Front Psychol. 2016 Oct 20;7:1545 [PMID: 27812338]
  19. Integr Physiol Behav Sci. 1994 Jul-Sep;29(3):217-34 [PMID: 7811643]
  20. Nonlinear Dynamics Psychol Life Sci. 2016 Jul;20(3):369-99 [PMID: 27262423]
  21. Nature. 2009 Sep 3;461(7260):53-9 [PMID: 19727193]
  22. Chaos. 2018 Aug;28(8):085720 [PMID: 30180619]
  23. Neuroimage Clin. 2021;32:102844 [PMID: 34653839]
  24. Nonlinear Dynamics Psychol Life Sci. 2014 Apr;18(2):155-76 [PMID: 24560009]
  25. Multivariate Behav Res. 2019 Mar-Apr;54(2):173-191 [PMID: 30569740]
  26. Cogn Neurodyn. 2018 Oct;12(5):441-459 [PMID: 30250624]
  27. Biol Cybern. 2010 Mar;102(3):197-207 [PMID: 20084517]
  28. Chaos. 2018 Aug;28(8):085701 [PMID: 30180612]
  29. Psychother Res. 2009 Jul;19(4-5):418-28 [PMID: 19034715]
  30. Front Psychol. 2020 Aug 12;11:1667 [PMID: 32903443]
  31. Front Psychol. 2016 Feb 15;7:130 [PMID: 26913016]
  32. PLoS One. 2016 Dec 20;11(12):e0168306 [PMID: 27997558]
  33. R J. 2021 Jun;13(1):184-193 [PMID: 34513030]
  34. Chaos. 2020 Feb;30(2):023111 [PMID: 32113225]
  35. PLoS One. 2012;7(7):e41010 [PMID: 22815897]
  36. Integr Physiol Behav Sci. 1992 Jan-Mar;27(1):39-53 [PMID: 1576087]
  37. Clin Psychol Psychother. 2019 Sep;26(5):586-602 [PMID: 31153157]

MeSH Term

Algorithms
Computer Simulation
Time Factors

Word Cloud

Created with Highcharts 10.0.0timeseriesPTDAtransitionschangepatternCPApsychologicalavailableidentificationfeaturespsychotherapeuticmethodpointcomplexstudyPatternTransitionDetectionAlgorithmdifferentsimulationpointsfalsecanusedMatlabincreasingusereal-timemonitoringproceduresclinicalpracticebecomeresearcherspractitionersimportantinterestconcernscharacteristicChangePointAnalysisestablishedidentifymeanand/orvariancechangesdetectedextensionoptimizedvalidatedalgorithmusesconvergentinformationmethodslikeRecurrencePlotsTimeFrequencyDistributionsDynamicComplexitysecondlevelapproachescaptureaspectsprimarydatasettesting300createdinstantaneouscontrolparametershiftmodelrunscomparingdispersionrandomrealdeterminestransitionsignificantreducesratenegativepositiveresults5%generalizesapplicationtypesRQAquantifiersalsononstationaryillustratedusingDeterminismEntropyeasilyfreelyFileExchangehttps://wwwmathworkscom/matlabcentral/fileexchange/80380-pattern-transition-detection-algorithm-ptdaDetecting-validation

Similar Articles

Cited By