Reorganization of 3D genome architecture across wild boar and Bama pig adipose tissues.

Jiaman Zhang, Pengliang Liu, Mengnan He, Yujie Wang, Hua Kui, Long Jin, Diyan Li, Mingzhou Li
Author Information
  1. Jiaman Zhang: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
  2. Pengliang Liu: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
  3. Mengnan He: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
  4. Yujie Wang: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
  5. Hua Kui: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
  6. Long Jin: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
  7. Diyan Li: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China. diyanli@sicau.edu.cn. ORCID
  8. Mingzhou Li: Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China. mingzhou.li@sicau.edu.cn.

Abstract

BACKGROUND: A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression. Recent studies have characterized chromatin organization in various porcine tissues and cell types and compared them among species and during the early development of pigs. However, how chromatin organization differs among pig breeds is poorly understood.
RESULTS: In this study, we investigated the 3D genome organization and performed transcriptome characterization of two adipose depots (upper layer of backfat [ULB] and greater omentum [GOM]) in wild boars and Bama pigs; the latter is a typical indigenous pig in China. We found that over 95% of the A/B compartments and topologically associating domains (TADs) are stable between wild boars and Bama pigs. In contrast, more than 70% of promoter-enhancer interactions (PEIs) are dynamic and widespread, involving over a thousand genes. Alterations in chromatin structure are associated with changes in the expression of genes that are involved in widespread biological functions such as basic cellular functions, endocrine function, energy metabolism and the immune response. Approximately 95% and 97% of the genes associated with reorganized A/B compartments and PEIs in the two pig breeds differed between GOM and ULB, respectively.
CONCLUSIONS: We reported 3D genome organization in adipose depots from different pig breeds. In a comparison of Bama pigs and wild boar, large-scale compartments and TADs were mostly conserved, while fine-scale PEIs were extensively reorganized. The chromatin architecture in these two pig breeds was reorganized in an adipose depot-specific manner. These results contribute to determining the regulatory mechanism of phenotypic differences between Bama pigs and wild boar.

Keywords

References

  1. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  2. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  3. DNA Res. 2021 May 2;28(2): [PMID: 34009337]
  4. Annu Rev Cell Dev Biol. 2017 Oct 6;33:265-289 [PMID: 28783961]
  5. Cell. 2013 Nov 7;155(4):934-47 [PMID: 24119843]
  6. Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9474-E9482 [PMID: 29078316]
  7. Cell Rep. 2019 Dec 17;29(12):4200-4211.e7 [PMID: 31851943]
  8. Dev Cell. 2016 Dec 5;39(5):529-543 [PMID: 27867070]
  9. Genome Biol. 2016 Nov 1;17(1):212 [PMID: 27799070]
  10. Int J Mol Sci. 2018 Sep 04;19(9): [PMID: 30181511]
  11. Development. 2006 Feb;133(4):761-72 [PMID: 16407397]
  12. Genet Mol Res. 2015 Mar 30;14(1):2608-16 [PMID: 25867408]
  13. Cell Biol Int. 2014 Dec;38(12):1384-93 [PMID: 25045020]
  14. BMC Biol. 2019 Dec 30;17(1):108 [PMID: 31884969]
  15. JCI Insight. 2017 Nov 16;2(22): [PMID: 29202451]
  16. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  17. Front Vet Sci. 2021 Aug 10;8:681192 [PMID: 34447801]
  18. Cell. 2014 Dec 18;159(7):1665-80 [PMID: 25497547]
  19. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  20. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  21. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  22. Adipocyte. 2014 Dec 10;3(4):236-41 [PMID: 26317047]
  23. Nat Commun. 2015 Nov 30;6:10069 [PMID: 26616563]
  24. Genome Res. 2015 Apr;25(4):582-97 [PMID: 25752748]
  25. Nat Genet. 2015 Jun;47(6):598-606 [PMID: 25938943]
  26. Front Genet. 2021 Oct 05;12:748239 [PMID: 34675966]
  27. Genome Res. 2017 Nov;27(11):1939-1949 [PMID: 28855260]
  28. Nature. 2012 Apr 11;485(7398):381-5 [PMID: 22495304]
  29. Obes Rev. 2010 Jan;11(1):11-8 [PMID: 19656312]
  30. Nat Commun. 2021 Jun 17;12(1):3715 [PMID: 34140474]
  31. J Allergy Clin Immunol. 2004 Sep;114(3):671-6 [PMID: 15356575]
  32. Genome Res. 2010 Jun;20(6):761-70 [PMID: 20430782]
  33. Nature. 2015 Jul 9;523(7559):240-4 [PMID: 26030525]
  34. Nat Commun. 2021 Apr 13;12(1):2217 [PMID: 33850120]
  35. Nature. 2019 May;569(7756):345-354 [PMID: 31092938]
  36. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  37. Immunity. 2012 May 25;36(5):705-16 [PMID: 22633458]
  38. Brief Bioinform. 2024 Mar 27;25(3): [PMID: 38711367]
  39. Bioinformatics. 2017 Jul 15;33(14):i261-i266 [PMID: 28882003]
  40. Nat Commun. 2017 Dec 21;8(1):2237 [PMID: 29269730]
  41. Cell. 2012 Nov 9;151(4):724-737 [PMID: 23141535]
  42. Nature. 2012 Apr 11;485(7398):376-80 [PMID: 22495300]
  43. Nat Rev Mol Cell Biol. 2019 Sep;20(9):535-550 [PMID: 31197269]
  44. Trends Immunol. 2014 Jun;35(6):233-42 [PMID: 24786134]
  45. Nat Rev Immunol. 2017 Sep;17(9):559-572 [PMID: 28555670]
  46. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  47. Cell. 2014 Mar 27;157(1):13-25 [PMID: 24679523]
  48. Mol Cell. 2017 Sep 7;67(5):837-852.e7 [PMID: 28826674]
  49. Nature. 2015 Feb 19;518(7539):331-6 [PMID: 25693564]
  50. Nat Rev Genet. 2019 Aug;20(8):437-455 [PMID: 31086298]

Grants

  1. 2020YFA0509500/the National Key R & D Program of China
  2. U19A2036, 31772576, 31530073 and 31802044/the National Natural Science Foundation of China
  3. 2021YFYZ0009 and 2021YFYZ0030/the Sichuan Science and Technology Program
  4. 2021YFH0033/the International Cooperation Project of Science and Technology Department of Sichuan Province

Word Cloud

Created with Highcharts 10.0.0piggenomeorganizationpigsbreedswildBamachromatin3DadiposecompartmentstissuestwoA/BPEIsgenesreorganizedboarexpressionamongdepotsboars95%TADswidespreadassociatedfunctionsarchitectureBACKGROUND:growingbodyevidencerevealedmammalianorganizedhierarchicallayerscloselycorrelatedmayevencausallylinkedvariationsgeneRecentstudiescharacterizedvariousporcinecelltypescomparedspeciesearlydevelopmentHoweverdifferspoorlyunderstoodRESULTS:studyinvestigatedperformedtranscriptomecharacterizationupperlayerbackfat[ULB]greateromentum[GOM]lattertypicalindigenousChinafoundtopologicallyassociatingdomainsstablecontrast70%promoter-enhancerinteractionsdynamicinvolvingthousandAlterationsstructurechangesinvolvedbiologicalbasiccellularendocrinefunctionenergymetabolismimmuneresponseApproximately97%differedGOMULBrespectivelyCONCLUSIONS:reporteddifferentcomparisonlarge-scalemostlyconservedfine-scaleextensivelydepot-specificmannerresultscontributedeterminingregulatorymechanismphenotypicdifferencesReorganizationacrossAdiposePEIPigTAD

Similar Articles

Cited By