Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD.

Gabriela Pessin Meyer, Bruna Santos da Silva, Cibele Edom Bandeira, Maria Eduarda Araujo Tavares, Renata Basso Cupertino, Eduarda Pereira Oliveira, Diana Müller, Djenifer B Kappel, Stefania Pigatto Teche, Eduardo Schneider Vitola, Luis Augusto Rohde, Diego Luiz Rovaris, Eugenio Horacio Grevet, Claiton Henrique Dotto Bau
Author Information
  1. Gabriela Pessin Meyer: Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  2. Bruna Santos da Silva: Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  3. Cibele Edom Bandeira: Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  4. Maria Eduarda Araujo Tavares: Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  5. Renata Basso Cupertino: Department of Psychiatry, University of Vermont, Burlington, VT, USA.
  6. Eduarda Pereira Oliveira: Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  7. Diana Müller: ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
  8. Djenifer B Kappel: Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales.
  9. Stefania Pigatto Teche: ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
  10. Eduardo Schneider Vitola: ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
  11. Luis Augusto Rohde: ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
  12. Diego Luiz Rovaris: Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil.
  13. Eugenio Horacio Grevet: ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
  14. Claiton Henrique Dotto Bau: Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. claiton.bau@ufrgs.br. ORCID

Abstract

The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in embryonic development. It is especially represented among GWAS hits for neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. While several functional studies are underway to understand the consequences of FOXP2 variation, this study aims to expand previous findings to clinically and genetically related phenotypes and neuroanatomical features among subjects with ADHD. The sample included 407 adults with ADHD and 463 controls. Genotyping was performed on the Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-wide approach was adopted to evaluate the combined effects of FOXP2 variants (n = 311) on ADHD status, severity, comorbidities, and personality traits. Independent risk variants presenting potential functional effects were further tested for association with cortical surface areas in a subsample of cases (n = 87). The gene-wide analyses within the ADHD sample showed a significant association of the FOXP2 gene with harm avoidance (P = 0.001; P = 0.015) and nominal associations with hyperactivity symptoms (P = 0.026; P = 0.130) and antisocial personality disorder (P = 0.026; P = 0.130). An insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated with the three outcomes and nominally with the surface area of superior parietal and anterior cingulate cortices. Our results extend and refine previous GWAS findings pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly those involving underlying symptomatic domains of self-regulation and inhibitory control. Taken together, the available evidence may constitute promising insights into the puzzle of the FOXP2-related pathophysiology.

Keywords

References

  1. Demontis D, Walters RK, Martin J et al (2019) Discovery of the first genome-wide significant risk loci for attention-deficit/hyperactivity disorder. Nat Genet 51:63–75. https://doi.org/10.1038/s41588-018-0269-7 [DOI: 10.1038/s41588-018-0269-7]
  2. Vernes SC, Oliver PL, Spiteri E et al (2011) FOXP2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002145 [DOI: 10.1371/journal.pgen.1002145]
  3. Konopka G, Bomar JM, Winden K et al (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462:213–217. https://doi.org/10.1038/nature08549 [DOI: 10.1038/nature08549]
  4. den Hoed J, Devaraju K, Fisher SE (2021) Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 22. https://doi.org/10.15252/EMBR.202152803
  5. Pievsky MA, McGrath RE (2018) The neurocognitive profile of attention-deficit/hyperactivity disorder: a review of meta-analyses. Arch Clin Neuropsychol 33:143–157. https://doi.org/10.1093/arclin/acx055 [DOI: 10.1093/arclin/acx055]
  6. Co M, Anderson AG, Konopka G (2020) FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 9:1–25. https://doi.org/10.1002/wdev.375 [DOI: 10.1002/wdev.375]
  7. Campbell P, Reep RL, Stoll ML et al (2009) Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J Comp Neurol 512:84–100. https://doi.org/10.1002/cne.21881 [DOI: 10.1002/cne.21881]
  8. Lai CSL, Gerrelli D, Monaco AP et al (2003) FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126:2455–2462. https://doi.org/10.1093/brain/awg247 [DOI: 10.1093/brain/awg247]
  9. Penhune VB, Steele CJ (2012) Parallel contributions of cerebellar, striatal, and M1 mechanisms to motor sequence learning. Behav Brain Res 226:579–591. https://doi.org/10.1016/j.bbr.2011.09.044 [DOI: 10.1016/j.bbr.2011.09.044]
  10. French CA, Vinueza Veloz MF, Zhou K et al (2019) Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 24:447–462. https://doi.org/10.1038/s41380-018-0199-x [DOI: 10.1038/s41380-018-0199-x]
  11. Gunaydin LA, Kreitzer AC (2016) Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 78:327–350. https://doi.org/10.1146/annurev-physiol-021115-105355 [DOI: 10.1146/annurev-physiol-021115-105355]
  12. Wei W, Wang XJ (2016) Inhibitory control in the cortico-basal ganglia-thalamocortical loop: complex regulation and interplay with memory and decision processes. Neuron 92:1093–1105. https://doi.org/10.1016/j.neuron.2016.10.031 [DOI: 10.1016/j.neuron.2016.10.031]
  13. Enard W, Gehre S, Hammerschmidt K et al (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971. https://doi.org/10.1016/j.cell.2009.03.041 [DOI: 10.1016/j.cell.2009.03.041]
  14. Enard W (2011) FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 21:415–424. https://doi.org/10.1016/j.conb.2011.04.008 [DOI: 10.1016/j.conb.2011.04.008]
  15. Reimers-Kipping S, Hevers W, Pääbo S, Enard W (2011) Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175:75–84. https://doi.org/10.1016/j.neuroscience.2010.11.042 [DOI: 10.1016/j.neuroscience.2010.11.042]
  16. Chen YC, Kuo HY, Bornschein U et al (2016) Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nat Neurosci 19:1513–1522. https://doi.org/10.1038/nn.4380 [DOI: 10.1038/nn.4380]
  17. Vicente AM, Martins GJ, Costa RM (2020) Cortico-basal ganglia circuits underlying dysfunctional control of motor behaviors in neuropsychiatric disorders. Curr Opin Genet Dev 65:151–159. https://doi.org/10.1016/j.gde.2020.05.042 [DOI: 10.1016/j.gde.2020.05.042]
  18. Rubin JE, Vich C, Clapp M et al (2021) The credit assignment problem in cortico-basal ganglia-thalamic networks: a review, a problem, and a possible solution. Eur J Neurosci 53:2234–2253. https://doi.org/10.1111/ejn.14745 [DOI: 10.1111/ejn.14745]
  19. Hoogman M, Bralten J, Hibar DP et al (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4:310–319. https://doi.org/10.1016/S2215-0366(17)30049-4 [DOI: 10.1016/S2215-0366(17)30049-4]
  20. Hoogman M, Muetzel R, Guimaraes JP et al (2019) Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176:531–542. https://doi.org/10.1176/appi.ajp.2019.18091033 [DOI: 10.1176/appi.ajp.2019.18091033]
  21. Boedhoe PSW, van Rooij D, Hoogman M et al (2020) Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD working groups. Am J Psychiatry 177:834–843. https://doi.org/10.1176/appi.ajp.2020.19030331 [DOI: 10.1176/appi.ajp.2020.19030331]
  22. Koomar T, Michaelson JJ (2020) Genetic intersections of language and neuropsychiatric conditions. Curr Psychiatry Rep 22:1–16. https://doi.org/10.1007/s11920-019-1123-z [DOI: 10.1007/s11920-019-1123-z]
  23. Medvedeva VP, Rieger MA, Vieth B et al (2019) Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet 28:701–717. https://doi.org/10.1093/hmg/ddy372 [DOI: 10.1093/hmg/ddy372]
  24. den Hoed J, Fisher SE (2020) Genetic pathways involved in human speech disorders. Curr Opin Genet Dev 65:103–111. https://doi.org/10.1016/j.gde.2020.05.012 [DOI: 10.1016/j.gde.2020.05.012]
  25. Satterstrom FK, Walters RK, Singh T et al (2019) Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat Neurosci 22:1961–1965. https://doi.org/10.1038/s41593-019-0527-8 [DOI: 10.1038/s41593-019-0527-8]
  26. Nagel M, Watanabe K, Stringer S et al (2018) Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. https://doi.org/10.1038/s41467-018-03242-8 [DOI: 10.1038/s41467-018-03242-8]
  27. Jansen PR, Watanabe K, Stringer S et al (2019) Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 51:394–403. https://doi.org/10.1038/s41588-018-0333-3 [DOI: 10.1038/s41588-018-0333-3]
  28. Dashti HS, Jones SE, Wood AR et al (2019) Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-08917-4 [DOI: 10.1038/s41467-019-08917-4]
  29. Clifton EAD, Perry JRB, Imamura F et al (2018) Genome-wide association study for risk-taking propensity indicates shared pathways with body mass index. Commun Biol. https://doi.org/10.1038/s42003-018-0042-6 [DOI: 10.1038/s42003-018-0042-6]
  30. Strawbridge RJ, Ward J, Lyall LM et al (2018) Genetics of self-reported risk-taking behavior, trans-ethnic consistency, and relevance to brain gene expression. Transl Psychiatry 8:1–11. https://doi.org/10.1038/s41398-018-0236-1 [DOI: 10.1038/s41398-018-0236-1]
  31. Karlsson Linnér R, Biroli P, Kong E et al (2019) Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet 51:245–257. https://doi.org/10.1038/s41588-018-0309-3 [DOI: 10.1038/s41588-018-0309-3]
  32. Moeller FG, Barratt ES, Dougherty DM et al (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793. https://doi.org/10.1176/appi.ajp.158.11.1783 [DOI: 10.1176/appi.ajp.158.11.1783]
  33. Staes N, Sherwood CC, Wright K et al (2017) FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-16844-x [DOI: 10.1038/s41598-017-16844-x]
  34. Tsui D, Vessey JP, Tomita H et al (2013) FoxP2 regulates neurogenesis during embryonic cortical development. J Neurosci 33:244–258. https://doi.org/10.1523/JNEUROSCI.1665-12.2013 [DOI: 10.1523/JNEUROSCI.1665-12.2013]
  35. van Rhijn JR, Fisher SE, Vernes SC, Nadif Kasri N (2018) Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct Funct 223:4211–4226. https://doi.org/10.1007/s00429-018-1746-6 [DOI: 10.1007/s00429-018-1746-6]
  36. Co M, Hickey SL, Kulkarni A et al (2020) Cortical Foxp2 supports behavioral flexibility and developmental dopamine D1 receptor expression. Cereb Cortex 30:1855–1870. https://doi.org/10.1093/cercor/bhz209 [DOI: 10.1093/cercor/bhz209]
  37. Schreiweis C, Bornschein U, Burguière E et al (2014) Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proc Natl Acad Sci USA 111:14253–14258. https://doi.org/10.1073/pnas.1414542111 [DOI: 10.1073/pnas.1414542111]
  38. Schreiweis C, Irinopoulou T, Vieth B et al (2019) Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex 118:212–222. https://doi.org/10.1016/j.cortex.2019.01.008 [DOI: 10.1016/j.cortex.2019.01.008]
  39. Kehdy FSG, Gouveia MH, Machado M et al (2015) Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc Natl Acad Sci USA 112:8696–8701. https://doi.org/10.1073/pnas.1504447112 [DOI: 10.1073/pnas.1504447112]
  40. Ruiz-Linares A, Adhikari K, Acuña-Alonzo V et al (2014) Admixture in Latin America: geographic structure, phenotypic diversity, and self-perception of ancestry based on 7342 individuals. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004572 [DOI: 10.1371/journal.pgen.1004572]
  41. Santos NPC, Ribeiro-Rodrigues EM, Ribeiro-dos-Santos ÂKC et al (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum Mutat 31:184–190. https://doi.org/10.1002/humu.21159 [DOI: 10.1002/humu.21159]
  42. Zembrzuski VM, Callegari-Jacques SM, Hutz MH (2006) Application of an African ancestry index as a genomic control approach in a Brazilian population. Ann Hum Genet 70:822–828. https://doi.org/10.1111/j.1469-1809.2006.00270.x [DOI: 10.1111/j.1469-1809.2006.00270.x]
  43. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn (DSM-IV). American Psychiatric Association, Washington
  44. American Psychiatry Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn (DSM-5). American Psychiatric Association, Arlington
  45. Matte B, Rohde LA, Turner JB et al (2015) Reliability and validity of proposed DSM-5 ADHD symptoms in a clinical sample of adults. J Neuropsychiatry Clin Neurosci 27:228–236. https://doi.org/10.1176/appi.neuropsych.13060137 [DOI: 10.1176/appi.neuropsych.13060137]
  46. Mercadante MT, Asbahr F, Rosario MC, Ayres AM, Ferrari MC, Assumpção FB, MIguel E (1995) K-SADS, entrevista semi-estruturada para diagnóstico em psiquiatria da infância, versão epidemiológica.tle. PROTOC-Hosp das Clínicas da FMUSP 1 ed
  47. Amorim P (2000) Mini international neuropsychiatric interview (MINI): validação de entrevista breve para diagnóstico de transtornos mentais. Rev Bras Psiquiatr 22:106–115. https://doi.org/10.1590/s1516-44462000000300003 [DOI: 10.1590/s1516-44462000000300003]
  48. Sheehan DV, Lecrubier Y, Sheehan KH et al (1998) The mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33 [PMID: 9881538]
  49. First MB, Spitzer RL, Gibbon M, Williams JBW (1998) Structured clinical interview for DSM-IV axis I disorders, research version, Patient edition (SCID-I/P). Biometrics Research, New York
  50. First MB, Williams JBW, Karg RS, Spitzer RL (2015) Structured clinical interview for DSM-5—research version (SCID-5 for DSM-5, Research Version; SCID-5-RV)
  51. Swanson JM (1992) School-based assessments and interventions for ADD students. KC Publications, Cape Town
  52. Cloninger C, Robert; Svrakic, Dragan M., Przibeck TR, (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50:975–990 [DOI: 10.1001/archpsyc.1993.01820240059008]
  53. Kessler RC, Adler L, Ames M et al (2005) The World Health Organization Adult ADHD self-report scale (ASRS): a short screening scale for use in the general population. Psychol Med 35:245–256. https://doi.org/10.1017/S0033291704002892 [DOI: 10.1017/S0033291704002892]
  54. Maston GA, Evans SK, Green MR (2006) Transcriptional regulatory elements in the human genome. Annu Rev Genom Hum Genet 7:29–59. https://doi.org/10.1146/annurev.genom.7.080505.115623 [DOI: 10.1146/annurev.genom.7.080505.115623]
  55. Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021 [DOI: 10.1016/j.neuroimage.2012.01.021]
  56. Hibar DP, Stein JL, Renteria ME et al (2015) Common genetic variants influence human subcortical brain structures. Nature 520:224–229. https://doi.org/10.1038/nature14101 [DOI: 10.1038/nature14101]
  57. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795 [DOI: 10.1086/519795]
  58. Boyle AP, Hong EL, Hariharan M et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797. https://doi.org/10.1101/gr.137323.112 [DOI: 10.1101/gr.137323.112]
  59. Rentzsch P, Witten D, Cooper GM et al (2019) CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886–D894. https://doi.org/10.1093/nar/gky1016 [DOI: 10.1093/nar/gky1016]
  60. Ward LD, Kellis M (2016) HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 44:D877–D881. https://doi.org/10.1093/nar/gkv1340 [DOI: 10.1093/nar/gkv1340]
  61. McLaren W, Gil L, Hunt SE et al (2016) The ensemble variant effect predictor. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0974-4 [DOI: 10.1186/s13059-016-0974-4]
  62. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006. https://doi.org/10.1101/gr.229102 [DOI: 10.1101/gr.229102]
  63. Liu C, Zhang F, Li T et al (2012) MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genom. https://doi.org/10.1186/1471-2164-13-661 [DOI: 10.1186/1471-2164-13-661]
  64. Watanabe K, Stringer S, Frei O et al (2019) A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51:1339–1348. https://doi.org/10.1038/s41588-019-0481-0 [DOI: 10.1038/s41588-019-0481-0]
  65. Machiela MJ, Chanock SJ (2015) LDlink: a web-based application exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31:3555–3557. https://doi.org/10.1093/bioinformatics/btv402 [DOI: 10.1093/bioinformatics/btv402]
  66. Pruim RJ, Welch RP, Sanna S et al (2011) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 27:2336–2337. https://doi.org/10.1093/bioinformatics/btq419 [DOI: 10.1093/bioinformatics/btq419]
  67. Paulus MP, Rogalsky C, Simmons A et al (2003) Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage 19:1439–1448. https://doi.org/10.1016/S1053-8119(03)00251-9 [DOI: 10.1016/S1053-8119(03)00251-9]
  68. Pollak Y, Dekkers TJ, Shoham R, Huizenga HM (2019) Risk-taking behavior in attention-deficit/hyperactivity disorder (ADHD): a review of potential underlying mechanisms and of interventions. Curr Psychiatry Rep. https://doi.org/10.1007/s11920-019-1019-y [DOI: 10.1007/s11920-019-1019-y]
  69. Du Rietz E, Coleman J, Glanville K et al (2018) Association of polygenic risk for attention-deficit/hyperactivity disorder with co-occurring traits and disorders. Biol Psychiatry Cogn Neurosci Neuroimaging 3:635–643. https://doi.org/10.1016/j.bpsc.2017.11.013 [DOI: 10.1016/j.bpsc.2017.11.013]
  70. Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69:1109–1116. https://doi.org/10.1016/j.biopsych.2011.01.014 [DOI: 10.1016/j.biopsych.2011.01.014]
  71. Smith RJ, Laiks LS (2018) Behavioral and neural mechanisms underlying habitual and compulsive drug-seeking. Prog Neuro-Psychopharmacol Biol Psychiatry 87:11–21. https://doi.org/10.1016/j.pnpbp.2017.09.003 [DOI: 10.1016/j.pnpbp.2017.09.003]
  72. Turner D, Sebastian A, Tüscher O (2017) Impulsivity and cluster B personality disorders. Curr Psychiatry Rep. https://doi.org/10.1007/s11920-017-0768-8 [DOI: 10.1007/s11920-017-0768-8]
  73. Jager A, Dam SA, Van Der Mierden S et al (2020) Modulation of cognitive flexibility by reward and punishment in BALB/cJ and BALB/cByJ mice. Behav Brain Res 378:112294. https://doi.org/10.1016/j.bbr.2019.112294 [DOI: 10.1016/j.bbr.2019.112294]
  74. Guimaraes JPOFT, Bralten J, Greven CU et al (2020) Discovering the shared biology of cognitive traits determined by genetic overlap. Neuroimage 208:116409. https://doi.org/10.1016/j.neuroimage.2019.116409 [DOI: 10.1016/j.neuroimage.2019.116409]
  75. Holroyd CB, Yeung N (2012) Motivation of extended behaviors by the anterior cingulate cortex. Trends Cogn Sci 16:122–128. https://doi.org/10.1016/j.tics.2011.12.008 [DOI: 10.1016/j.tics.2011.12.008]
  76. Kawai T, Yamada H, Sato N et al (2015) Roles of the lateral habenula and anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in nonhuman primates. Neuron 88:792–804. https://doi.org/10.1016/j.neuron.2015.09.030 [DOI: 10.1016/j.neuron.2015.09.030]
  77. Bayard F, Nymberg Thunell C, Abé C et al (2020) Distinct brain structure and behavior related to ADHD and conduct disorder traits. Mol Psychiatry 25:3020–3033. https://doi.org/10.1038/s41380-018-0202-6 [DOI: 10.1038/s41380-018-0202-6]
  78. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93. https://doi.org/10.1016/j.tics.2010.11.004 [DOI: 10.1016/j.tics.2010.11.004]
  79. Holroyd CB, Umemoto A (2016) The research domain criteria framework: the case for anterior cingulate cortex. Neurosci Biobehav Rev 71:418–443. https://doi.org/10.1016/j.neubiorev.2016.09.021 [DOI: 10.1016/j.neubiorev.2016.09.021]
  80. Steele VR, Aharoni E, Munro GE et al (2013) A large scale (N = 102) functional neuroimaging study of response inhibition in a Go/NoGo task. Behav Brain Res 256:529–536. https://doi.org/10.1016/j.bbr.2013.06.001 [DOI: 10.1016/j.bbr.2013.06.001]
  81. Braver TS, Barch DM, Gray JR et al (2001) Anterior cingulate cortex and response conflict: effects of frequency, inhibition, and errors. Cereb Cortex 11:825–836. https://doi.org/10.1093/cercor/11.9.825 [DOI: 10.1093/cercor/11.9.825]
  82. Kerns JG, Cohen JD, MacDonald AW et al (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303(80):1023–1026. https://doi.org/10.1126/science.1089910 [DOI: 10.1126/science.1089910]
  83. Gruber SA, Rogowska J, Holcomb P et al (2002) Stroop performance in normal control subjects: an fMRI study. Neuroimage 16:349–360. https://doi.org/10.1006/nimg.2002.1089 [DOI: 10.1006/nimg.2002.1089]
  84. Garavan H, Hester R, Murphy K et al (2006) Individual differences in the functional neuroanatomy of inhibitory control. Brain Res 1105:130–142. https://doi.org/10.1016/j.brainres.2006.03.029 [DOI: 10.1016/j.brainres.2006.03.029]
  85. Zhang J, Hughes LE, Rowe JB (2012) Selection and inhibition mechanisms for human voluntary action decisions. Neuroimage 63:392–402. https://doi.org/10.1016/j.neuroimage.2012.06.058 [DOI: 10.1016/j.neuroimage.2012.06.058]
  86. Hart H, Radua J, Nakao T et al (2013) Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiat 70:185–198. https://doi.org/10.1001/jamapsychiatry.2013.277 [DOI: 10.1001/jamapsychiatry.2013.277]
  87. Chan AS, Han YMY, Leung WWM et al (2011) Abnormalities in the anterior cingulate cortex associated with attentional and inhibitory control deficits: a neurophysiological study on children with autism spectrum disorders. Res Autism Spectr Disord 5:254–266. https://doi.org/10.1016/j.rasd.2010.04.007 [DOI: 10.1016/j.rasd.2010.04.007]
  88. Gavita OA, Capris D, Bolno J, David D (2012) Anterior cingulate cortex findings in child disruptive behavior disorders. A meta-analysis. Aggress Violent Behav 17:507–513. https://doi.org/10.1016/j.avb.2012.07.002 [DOI: 10.1016/j.avb.2012.07.002]
  89. Clovis YM, Enard W, Marinaro F et al (2012) Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139:3332–3342. https://doi.org/10.1242/dev.078063 [DOI: 10.1242/dev.078063]
  90. Fu L, Shi Z, Luo G et al (2014) Multiple microRNAs regulate human FOXP2 gene expression by targeting sequences in its 3′ untranslated region. Mol Brain 7:1–7. https://doi.org/10.1186/s13041-014-0071-0 [DOI: 10.1186/s13041-014-0071-0]

Grants

  1. 476529/2012-3/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  2. 466722/2014-1/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  3. 424041/2016-2/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  4. finance code 001/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  5. FIPE-HCPA 160600/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  6. PqG-19/2551-0003731/Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
  7. PqG-19/2551-001668-9/Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

MeSH Term

Humans
Attention Deficit Disorder with Hyperactivity
Autism Spectrum Disorder
Genome-Wide Association Study
Phenotype
Brain
Forkhead Transcription Factors

Chemicals

FOXP2 protein, human
Forkhead Transcription Factors

Word Cloud

Created with Highcharts 10.0.0FOXP2ADHDP = 0GWAStraitsdisorderphenotypeseffectsroleamongdisordersrelatedseveralfunctionalpreviousfindingssampleadultsgenegene-widevariantspersonalityassociationsurface026130ForkheadboxP2encodestranscriptionfactorbroadembryonicdevelopmentespeciallyrepresentedhitsneurodevelopmentalincludingattention-deficit/hyperactivityautismspectrumneuroticismrisk-takingbehaviorsstudiesunderwayunderstandconsequencesvariationstudyaimsexpandclinicallygeneticallyneuroanatomicalfeaturessubjectsincluded407463controlsGenotypingperformedInfiniumPsychArray-24BeadChipregionextractedapproachadoptedevaluatecombinedn = 311statusseveritycomorbiditiesIndependentriskpresentingpotentialtestedcorticalareassubsamplecasesn = 87analyseswithinshowedsignificantharmavoidance001015nominalassociationshyperactivitysymptomsantisocialinsertion/deletionvariantrs79622555locateddownstreamassociatedthreeoutcomesnominallyareasuperiorparietalanteriorcingulatecorticesresultsextendrefinepointingneurodevelopment-relatedmainlyinvolvingunderlyingsymptomaticdomainsself-regulationinhibitorycontrolTakentogetheravailableevidencemayconstitutepromisinginsightspuzzleFOXP2-relatedpathophysiologyDissectingcross-traithitclinicalbrainPersonalityPsychiatricStructuralneuroimaging

Similar Articles

Cited By