Salicylic Acid-Mediated Disturbance Increases Bacterial Diversity in the Phyllosphere but Is Overcome by a Dominant Core Community.

Stacey A Vincent, Andreas Ebertz, Pietro D Spanu, Paul F Devlin
Author Information
  1. Stacey A Vincent: Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom.
  2. Andreas Ebertz: Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom.
  3. Pietro D Spanu: Department of Life Sciences, Imperial College London, London, United Kingdom.
  4. Paul F Devlin: Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom.

Abstract

Plant microbiomes and immune responses have coevolved through history, and this applies just as much to the phyllosphere microbiome and defense phytohormone signaling. When in homeostasis, the phyllosphere microbiome confers benefits to its host. However, the phyllosphere is also dynamic and subject to stochastic events that can modulate community assembly. Investigations into the impact of defense phytohormone signaling on the microbiome have so far been limited to culture-dependent studies; or focused on the rhizosphere. In this study, the impact of the foliar phytohormone salicylic acid (SA) on the structure and composition of the phyllosphere microbiome was investigated. 16S rRNA amplicons were sequenced from aerial tissues of two mutants that exhibit elevated SA signaling through different mechanisms. SA signaling was shown to increase community diversity and to result in the colonization of rare, satellite taxa in the phyllosphere. However, a stable core community remained in high abundance. Therefore, we propose that SA signaling acts as a source of intermediate disturbance in the phyllosphere. Predictive metagenomics revealed that the SA-mediated microbiome was enriched for antibiotic biosynthesis and the degradation of a diverse range of xenobiotics. Core taxa were predicted to be more motile, biofilm-forming and were enriched for traits associated with microbe-microbe communication; offering potential mechanistic explanation of their success despite SA-mediated phyllospheric disturbance.

Keywords

References

  1. Front Microbiol. 2018 Nov 06;9:2479 [PMID: 30459725]
  2. Front Plant Sci. 2018 Oct 12;9:1482 [PMID: 30369938]
  3. ISME J. 2022 Jan;16(1):122-137 [PMID: 34272494]
  4. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  5. Plant Mol Biol. 2016 Aug;91(6):713-25 [PMID: 26879412]
  6. mBio. 2014 Jan 21;5(1):e00682-13 [PMID: 24449749]
  7. Science. 2015 Aug 21;349(6250):860-4 [PMID: 26184915]
  8. PLoS One. 2016 Sep 26;11(9):e0163482 [PMID: 27669159]
  9. PLoS Comput Biol. 2009 Apr;5(4):e1000352 [PMID: 19360128]
  10. Appl Environ Microbiol. 2014 Jun;80(12):3585-96 [PMID: 24682305]
  11. Appl Environ Microbiol. 2012 Mar;78(6):1752-64 [PMID: 22247152]
  12. Plant J. 2003 May;34(4):453-71 [PMID: 12753585]
  13. Front Plant Sci. 2016 Feb 22;7:175 [PMID: 26941752]
  14. Physiol Plant. 2019 Feb;165(2):369-382 [PMID: 30461017]
  15. J Integr Plant Biol. 2016 Jan;58(1):91-103 [PMID: 25989254]
  16. ISME Commun. 2021 Apr 14;1(1):13 [PMID: 36721011]
  17. Mol Plant Microbe Interact. 2007 Dec;20(12):1512-22 [PMID: 17990959]
  18. EMBO J. 2002 Mar 15;21(6):1339-49 [PMID: 11889039]
  19. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13715-20 [PMID: 25225376]
  20. Plant Physiol. 2004 Sep;136(1):2818-30 [PMID: 15347794]
  21. Trends Genet. 2021 Apr;37(4):306-316 [PMID: 33036802]
  22. mBio. 2014 Aug 12;5(4): [PMID: 25118240]
  23. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  24. BMC Genomics. 2020 Jan 17;21(1):56 [PMID: 31952477]
  25. Cells. 2021 Apr 20;10(4): [PMID: 33924244]
  26. Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544 [PMID: 29790989]
  27. J Exp Bot. 2017 Mar 1;68(6):1323-1331 [PMID: 28007954]
  28. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  29. Adv Appl Microbiol. 2011;76:1-25 [PMID: 21924970]
  30. Science. 2007 Nov 23;318(5854):1302-5 [PMID: 18033885]
  31. Mol Plant. 2016 Apr 4;9(4):541-57 [PMID: 26714049]
  32. J Biol Chem. 2020 Sep 25;295(39):13444-13457 [PMID: 32732287]
  33. Plant Physiol. 2013 Oct;163(2):1059-70 [PMID: 23958864]
  34. Mol Plant Microbe Interact. 2015 Mar;28(3):274-85 [PMID: 25679538]
  35. Ann Bot. 2003 Sep;92(3):329-37 [PMID: 12871847]
  36. Microorganisms. 2019 Jan 10;7(1): [PMID: 30634578]
  37. Nat Commun. 2016 Jul 12;7:12151 [PMID: 27402057]
  38. Sci Total Environ. 2018 Dec 15;645:1230-1237 [PMID: 30248848]
  39. BMC Microbiol. 2018 Nov 23;18(1):194 [PMID: 30470193]
  40. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  41. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1148-1159 [PMID: 31806755]
  42. mBio. 2016 Dec 20;7(6): [PMID: 27999158]
  43. Nat Ecol Evol. 2019 Oct;3(10):1445-1454 [PMID: 31558832]
  44. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  45. J Theor Biol. 1970 Oct;29(1):151-4 [PMID: 5493290]
  46. New Phytol. 2010 Jul;187(2):301-312 [PMID: 20456049]
  47. Appl Environ Microbiol. 1998 Dec;64(12):4789-95 [PMID: 9835563]
  48. Front Plant Sci. 2020 Jan 29;10:1758 [PMID: 32063914]
  49. Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551 [PMID: 33125081]
  50. Plant Signal Behav. 2008 Aug;3(8):562-3 [PMID: 19704469]
  51. Science. 1978 Mar 24;199(4335):1302-10 [PMID: 17840770]
  52. Nat Microbiol. 2021 Jul;6(7):852-864 [PMID: 34194036]
  53. Mol Plant. 2014 Aug;7(8):1267-1287 [PMID: 24777989]
  54. Genome Biol. 2013 Jun 25;14(6):209 [PMID: 23805896]
  55. mBio. 2020 Jun 16;11(3): [PMID: 32546614]
  56. Plant Cell. 2019 Sep;31(9):2089-2106 [PMID: 31311834]
  57. J Exp Bot. 2021 Jan 20;72(1):36-56 [PMID: 32910810]
  58. Front Microbiol. 2016 Dec 02;7:1950 [PMID: 27994581]
  59. NPJ Biofilms Microbiomes. 2019 Feb 11;5(1):8 [PMID: 30774969]
  60. Front Microbiol. 2015 May 22;6:486 [PMID: 26052316]
  61. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  62. Front Plant Sci. 2019 Oct 18;10:1349 [PMID: 31681397]
  63. Microorganisms. 2018 Sep 21;6(4): [PMID: 30248973]
  64. Plant Cell. 2013 Feb;25(2):744-61 [PMID: 23435661]
  65. Mol Plant Microbe Interact. 2015 Sep;28(9):1049-58 [PMID: 26035128]
  66. Protein Sci. 2019 Nov;28(11):1947-1951 [PMID: 31441146]
  67. Annu Rev Microbiol. 2009;63:133-54 [PMID: 19575571]
  68. Environ Microbiol. 2021 Apr;23(4):2132-2151 [PMID: 33393154]
  69. Sci Rep. 2019 Oct 4;9(1):14294 [PMID: 31586145]
  70. Annu Rev Cell Dev Biol. 2012;28:489-521 [PMID: 22559264]
  71. J Biosci. 2013 Jun;38(2):433-49 [PMID: 23660678]
  72. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  73. PLoS One. 2016 Nov 7;11(11):e0166104 [PMID: 27820856]
  74. Genes (Basel). 2018 Nov 13;9(11): [PMID: 30428546]
  75. Mol Plant Pathol. 2019 Aug;20(8):1163-1178 [PMID: 31305008]
  76. Nature. 2020 Apr;580(7805):653-657 [PMID: 32350464]

Word Cloud

Created with Highcharts 10.0.0phyllospheremicrobiomesignalingSAphytohormonecommunityimmunedefenseHoweverimpactsalicylicaciddiversitytaxadisturbanceSA-mediatedenrichedCorePlantmicrobiomesresponsescoevolvedhistoryappliesjustmuchhomeostasisconfersbenefitshostalsodynamicsubjectstochasticeventscanmodulateassemblyInvestigationsfarlimitedculture-dependentstudiesfocusedrhizospherestudyfoliarstructurecompositioninvestigated16SrRNAampliconssequencedaerialtissuestwomutantsexhibitelevateddifferentmechanismsshownincreaseresultcolonizationraresatellitestablecoreremainedhighabundanceThereforeproposeactssourceintermediatePredictivemetagenomicsrevealedantibioticbiosynthesisdegradationdiverserangexenobioticspredictedmotilebiofilm-formingtraitsassociatedmicrobe-microbecommunicationofferingpotentialmechanisticexplanationsuccessdespitephyllosphericSalicylicAcid-MediatedDisturbanceIncreasesBacterialDiversityPhyllosphereOvercomeDominantCommunitybacteriaresponsemetabarcodingplant

Similar Articles

Cited By