Combining rank-size and k-means for clustering countries over the COVID-19 new deaths per million.

Roy Cerqueti, Valerio Ficcadenti
Author Information
  1. Roy Cerqueti: Sapienza University of Rome, Department of Social and Economic Sciences, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
  2. Valerio Ficcadenti: London South Bank University, Business School, Borough Road, 103, SE1 0AA London, United Kingdom.

Abstract

This paper deals with the cluster analysis of selected countries based on COVID-19 new deaths per million data. We implement a statistical procedure that combines a rank-size exploration and a -means approach for clustering. Specifically, we first carry out a best-fit exercise on a suitable polynomial rank-size law at an individual country level; then, we cluster the considered countries by adopting a -means clustering procedure based on the calibrated best-fit parameters. The investigated countries are selected considering those with a high value for the Healthcare Access and Quality Index to make a consistent analysis and reduce biases from the data collection phase. Interesting results emerge from the meaningful interpretation of the parameters of the best-fit curves; in particular, we show some relevant properties of the considered countries when dealing with the days with the highest number of new daily deaths per million and waves. Moreover, the exploration of the obtained clusters allows explaining some common countries' features.

Keywords

References

  1. PLoS One. 2020 Oct 29;15(10):e0241166 [PMID: 33119721]
  2. Nonlinear Dyn. 2020;100(3):2953-2972 [PMID: 32427206]
  3. Sci Rep. 2021 May 5;11(1):9626 [PMID: 33953307]
  4. Chaos Solitons Fractals. 2021 Oct;151:111240 [PMID: 34253943]
  5. Chaos. 2020 Jun;30(6):061108 [PMID: 32611104]
  6. Chaos Solitons Fractals. 2021 Jan;142:110336 [PMID: 33110297]
  7. Lancet. 2017 Jul 15;390(10091):231-266 [PMID: 28528753]
  8. Internet Things (Amst). 2020 Sep;11:100222 [PMID: 38620477]
  9. Sci Adv. 2020 Aug 05;6(32):eabc1463 [PMID: 32923613]
  10. Biom J. 2021 Mar;63(3):471-489 [PMID: 33215765]
  11. Spat Stat. 2022 Jun;49:100504 [PMID: 33816095]
  12. Data Brief. 2020 May 29;31:105787 [PMID: 32523977]
  13. PLoS One. 2020 Dec 8;15(12):e0243123 [PMID: 33290420]
  14. Appl Netw Sci. 2021;6(1):10 [PMID: 33614901]
  15. Sci Rep. 2021 Jul 27;11(1):15271 [PMID: 34315932]
  16. IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7 [PMID: 21868852]
  17. PLoS One. 2016 Nov 3;11(11):e0166011 [PMID: 27812192]
  18. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  19. Array (N Y). 2021 Sep;11:100085 [PMID: 35083430]
  20. Comput Stat Data Anal. 2021 Jul;159:107217 [PMID: 33723467]
  21. J Biosaf Biosecur. 2020 Dec;2(2):102-104 [PMID: 32954228]
  22. Sci Rep. 2021 Feb 25;11(1):4725 [PMID: 33633275]
  23. Int J Infect Dis. 2020 Jul;96:477-481 [PMID: 32470605]
  24. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16732-16738 [PMID: 32616574]
  25. Qual Quant. 2022;56(3):1283-1291 [PMID: 34103768]
  26. Ann Data Sci. 2020;7(3):417-425 [PMID: 38624317]
  27. Int J Forecast. 2022 Apr-Jun;38(2):423-438 [PMID: 32863495]
  28. Chaos Solitons Fractals. 2020 Oct;139:110046 [PMID: 32834601]
  29. Spat Stat. 2022 Jun;49:100508 [PMID: 33868908]
  30. Sci Data. 2020 Oct 8;7(1):345 [PMID: 33033256]