Detection of subtle white matter lesions in MRI through texture feature extraction and boundary delineation using an embedded clustering strategy.

Kokhaur Ong, David M Young, Sarina Sulaiman, Siti Mariyam Shamsuddin, Norzaini Rose Mohd Zain, Hilwati Hashim, Kahhay Yuen, Stephan J Sanders, Weimiao Yu, Seepheng Hang
Author Information
  1. Kokhaur Ong: Bioinformatics Institute, A*STAR, Singapore, Singapore.
  2. David M Young: Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
  3. Sarina Sulaiman: School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
  4. Siti Mariyam Shamsuddin: School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.
  5. Norzaini Rose Mohd Zain: Department of Radiology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia.
  6. Hilwati Hashim: Department of Radiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.
  7. Kahhay Yuen: School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.
  8. Stephan J Sanders: Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA.
  9. Weimiao Yu: Bioinformatics Institute, A*STAR, Singapore, Singapore. yu_weimiao@bii.a-star.edu.sg.
  10. Seepheng Hang: Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor, Malaysia. sphang@utm.my.

Abstract

White matter lesions (WML) underlie multiple brain disorders, and automatic WML segmentation is crucial to evaluate the natural disease course and effectiveness of clinical interventions, including drug discovery. Although recent research has achieved tremendous progress in WML segmentation, accurate detection of subtle WML present early in the disease course remains particularly challenging. Here we propose an approach to automatic WML segmentation of mild WML loads using an intensity standardisation technique, gray level co-occurrence matrix (GLCM) embedded clustering technique, and random forest (RF) classifier to extract texture features and identify morphology specific to true WML. We precisely define their boundaries through a local outlier factor (LOF) algorithm that identifies edge pixels by local density deviation relative to its neighbors. The automated approach was validated on 32 human subjects, demonstrating strong agreement and correlation (excluding one outlier) with manual delineation by a neuroradiologist through Intra-Class Correlation (ICC = 0.881, 95% CI 0.769, 0.941) and Pearson correlation (r = 0.895, p-value < 0.001), respectively, and outperforming three leading algorithms (Trimmed Mean Outlier Detection, Lesion Prediction Algorithm, and SALEM-LS) in five of the six established key metrics defined in the MICCAI Grand Challenge. By facilitating more accurate segmentation of subtle WML, this approach may enable earlier diagnosis and intervention.

References

  1. Cerebrovasc Dis. 2006;22(2-3):83-90 [PMID: 16685119]
  2. Neuroimage. 2011 Jul 15;57(2):378-90 [PMID: 21497655]
  3. Neuroradiology. 2015 Oct;57(10):1031-43 [PMID: 26227167]
  4. Sci Rep. 2017 Jan 30;7:41637 [PMID: 28134332]
  5. Neuroimage Clin. 2019;23:101849 [PMID: 31085465]
  6. Neuroinformatics. 2015 Jul;13(3):261-76 [PMID: 25649877]
  7. Med Image Anal. 2013 Jan;17(1):1-18 [PMID: 23084503]
  8. Neuroimage. 2017 Aug 15;157:233-249 [PMID: 28602597]
  9. Neurodegener Dis. 2010;7(1-3):122-6 [PMID: 20173341]
  10. Neurology. 2008 Jul 8;71(2):108-13 [PMID: 18606964]
  11. Neuroimage Clin. 2020;27:102357 [PMID: 32739882]
  12. Commun Phys. 2019 Dec;2(1): [PMID: 31673637]
  13. Neuroimage. 2012 Feb 15;59(4):3774-83 [PMID: 22119648]
  14. Comput Med Imaging Graph. 2010 Jul;34(5):370-6 [PMID: 20116974]
  15. IEEE Trans Med Imaging. 1997 Oct;16(5):598-609 [PMID: 9368115]
  16. Neurology. 2018 Sep 4;91(10):e964-e975 [PMID: 30076276]
  17. Neurol Clin. 2011 May;29(2):357-80 [PMID: 21439446]
  18. IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 [PMID: 9617910]
  19. Neuroimage Clin. 2015 May 13;8:376-89 [PMID: 26106563]
  20. J Chiropr Med. 2016 Jun;15(2):155-63 [PMID: 27330520]
  21. AJR Am J Roentgenol. 1987 Aug;149(2):351-6 [PMID: 3496763]
  22. Nat Rev Neurol. 2015 Dec;11(12):676-86 [PMID: 26526531]
  23. Stroke. 2001 Jun;32(6):1318-22 [PMID: 11387493]
  24. Stroke. 2014 May;45(5):1422-8 [PMID: 24699052]
  25. Alzheimers Dement (N Y). 2019 Apr 09;5:107-117 [PMID: 31011621]
  26. Comput Med Imaging Graph. 2020 Jan;79:101685 [PMID: 31846826]
  27. J Neurol Neurosurg Psychiatry. 2002 May;72(5):576-82 [PMID: 11971040]
  28. Magn Reson Imaging. 2021 Feb;76:108-115 [PMID: 33220450]
  29. Magn Reson Imaging. 2012 Jul;30(6):807-23 [PMID: 22578927]
  30. Lancet. 2003 Jun 14;361(9374):2046-8 [PMID: 12814718]
  31. Hum Brain Mapp. 2009 Apr;30(4):1155-67 [PMID: 18465744]
  32. Comput Med Imaging Graph. 2010 Jul;34(5):404-13 [PMID: 20189353]
  33. Curr Treat Options Cardiovasc Med. 2014 Mar;16(3):292 [PMID: 24496967]
  34. IEEE Trans Med Imaging. 2015 Oct;34(10):2079-102 [PMID: 25850086]
  35. Neuroimage Clin. 2020;25:102151 [PMID: 31927502]
  36. Int Psychogeriatr. 2011 Jun;23(5):780-7 [PMID: 21110907]
  37. Top Magn Reson Imaging. 2004 Dec;15(6):365-7 [PMID: 16041288]
  38. J Neurol Sci. 2007 Jun 15;257(1-2):5-10 [PMID: 17321549]
  39. BMJ. 2010 Jul 26;341:c3666 [PMID: 20660506]
  40. Psychiatry Res. 2006 Dec 1;148(2-3):133-42 [PMID: 17097277]
  41. J Neurol Sci. 1993 Jan;114(1):7-12 [PMID: 8433101]
  42. AJNR Am J Neuroradiol. 1987 Nov-Dec;8(6):1057-62 [PMID: 3120532]
  43. Sci Rep. 2017 Jul 11;7(1):5110 [PMID: 28698556]
  44. J Stroke Cerebrovasc Dis. 2011 Jul-Aug;20(4):302-9 [PMID: 20634092]
  45. Neuroimage. 2017 Jul 15;155:159-168 [PMID: 28435096]
  46. Neuroimage. 2006 Aug 1;32(1):79-92 [PMID: 16697666]
  47. Neuroimage. 2016 Nov 1;141:191-205 [PMID: 27402600]
  48. Front Neurosci. 2019 Apr 16;13:353 [PMID: 31057353]
  49. Neuroimage. 2009 May 1;45(4):1151-61 [PMID: 19344687]
  50. Eur J Neurol. 2010 Mar;17(3):377-82 [PMID: 19845747]
  51. Comput Med Imaging Graph. 2015 Oct;45:102-11 [PMID: 26398564]
  52. Pract Neurol. 2008 Feb;8(1):26-38 [PMID: 18230707]
  53. Stroke. 2011 Jul;42(7):2086-90 [PMID: 21636821]
  54. IEEE Trans Med Imaging. 2005 May;24(5):561-76 [PMID: 15889544]
  55. Ageing Res Rev. 2019 Jan;49:67-82 [PMID: 30472216]

MeSH Term

Algorithms
Brain
Cluster Analysis
Humans
Magnetic Resonance Imaging
White Matter

Word Cloud

Created with Highcharts 10.0.0WMLsegmentationsubtleapproachmatterlesionsautomaticdiseasecourseaccurateusingtechniqueembeddedclusteringtexturelocaloutliercorrelationdelineation0DetectionWhiteunderliemultiplebraindisorderscrucialevaluatenaturaleffectivenessclinicalinterventionsincludingdrugdiscoveryAlthoughrecentresearchachievedtremendousprogressdetectionpresentearlyremainsparticularlychallengingproposemildloadsintensitystandardisationgraylevelco-occurrencematrixGLCMrandomforestRFclassifierextractfeaturesidentifymorphologyspecifictruepreciselydefineboundariesfactorLOFalgorithmidentifiesedgepixelsdensitydeviationrelativeneighborsautomatedvalidated32humansubjectsdemonstratingstrongagreementexcludingonemanualneuroradiologistIntra-ClassCorrelationICC = 088195%CI769941Pearsonr = 0895p-value < 0001respectivelyoutperformingthreeleadingalgorithmsTrimmedMeanOutlierLesionPredictionAlgorithmSALEM-LSfivesixestablishedkeymetricsdefinedMICCAIGrandChallengefacilitatingmayenableearlierdiagnosisinterventionwhiteMRIfeatureextractionboundarystrategy

Similar Articles

Cited By