Unbiased integration of single cell transcriptome replicates.

Martin Loza, Shunsuke Teraguchi, Daron M Standley, Diego Diez
Author Information
  1. Martin Loza: Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ORCID
  2. Shunsuke Teraguchi: Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ORCID
  3. Daron M Standley: Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ORCID
  4. Diego Diez: Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ORCID

Abstract

Single cell transcriptomic approaches are becoming mainstream, with replicate experiments commonly performed with the same single cell technology. Methods that enable integration of these datasets by removing batch effects while preserving biological information are required for unbiased data interpretation. Here, we introduce Canek for this purpose. Canek leverages information from mutual nearest neighbor to combine local linear corrections with cell-specific non-linear corrections within a fuzzy logic framework. Using a combination of real and synthetic datasets, we show that Canek corrects batch effects while introducing the least amount of bias compared with competing methods. Canek is computationally efficient and can easily integrate thousands of single-cell transcriptomes from replicated experiments.

References

  1. Nat Methods. 2022 Jan;19(1):41-50 [PMID: 34949812]
  2. Genome Biol. 2017 Sep 12;18(1):174 [PMID: 28899397]
  3. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  4. Nat Methods. 2019 Jan;16(1):43-49 [PMID: 30573817]
  5. Genome Res. 2017 Feb;27(2):208-222 [PMID: 27864352]
  6. Nat Biotechnol. 2021 Oct;39(10):1202-1215 [PMID: 33941931]
  7. Cell Syst. 2016 Oct 26;3(4):346-360.e4 [PMID: 27667365]
  8. PLoS One. 2013 Apr 23;8(4):e62366 [PMID: 23626809]
  9. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  10. Proc Natl Acad Sci U S A. 2019 May 14;116(20):9775-9784 [PMID: 31028141]
  11. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  12. Genome Biol. 2020 Jan 16;21(1):12 [PMID: 31948481]
  13. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  14. Sci Adv. 2020 Jul 08;6(28):eaba1983 [PMID: 32832599]
  15. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  16. Nat Protoc. 2018 Apr;13(4):599-604 [PMID: 29494575]
  17. NAR Genom Bioinform. 2020 Sep;2(3):lqaa078 [PMID: 33015620]
  18. Nat Biotechnol. 2019 Jun;37(6):685-691 [PMID: 31061482]
  19. Cell. 2019 Jun 13;177(7):1873-1887.e17 [PMID: 31178122]
  20. Cell Syst. 2016 Oct 26;3(4):385-394.e3 [PMID: 27693023]
  21. Nat Biotechnol. 2018 Jan;36(1):89-94 [PMID: 29227470]
  22. Bioinformatics. 2020 Feb 1;36(3):964-965 [PMID: 31400197]
  23. Nature. 2018 Oct;562(7727):367-372 [PMID: 30283141]
  24. Cell Metab. 2016 Oct 11;24(4):593-607 [PMID: 27667667]
  25. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  26. Cell Stem Cell. 2016 Aug 4;19(2):266-277 [PMID: 27345837]
  27. Nat Rev Genet. 2010 Oct;11(10):733-9 [PMID: 20838408]

Word Cloud

Created with Highcharts 10.0.0CanekcellexperimentssingleintegrationdatasetsbatcheffectsinformationcorrectionsSingletranscriptomicapproachesbecomingmainstreamreplicatecommonlyperformedtechnologyMethodsenableremovingpreservingbiologicalrequiredunbiaseddatainterpretationintroducepurposeleveragesmutualnearestneighborcombinelocallinearcell-specificnon-linearwithinfuzzylogicframeworkUsingcombinationrealsyntheticshowcorrectsintroducingleastamountbiascomparedcompetingmethodscomputationallyefficientcaneasilyintegratethousandssingle-celltranscriptomesreplicatedUnbiasedtranscriptomereplicates

Similar Articles

Cited By