Activating stress memory: eustressors as potential tools for plant breeding.

A L Villagómez-Aranda, A A Feregrino-Pérez, L F García-Ortega, M M González-Chavira, I Torres-Pacheco, R G Guevara-González
Author Information
  1. A L Villagómez-Aranda: Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
  2. A A Feregrino-Pérez: Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
  3. L F García-Ortega: Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico.
  4. M M González-Chavira: Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico.
  5. I Torres-Pacheco: Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
  6. R G Guevara-González: Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico. ramon.guevara@uaq.mx. ORCID

Abstract

Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.

Keywords

References

  1. Agathokleous E, Calabrese EJ (2019) Hormesis can enhance agricultural sustainability in a changing world. Glob Food Sec 20:150–155. https://doi.org/10.1016/j.gfs.2019.02.005 [DOI: 10.1016/j.gfs.2019.02.005]
  2. Akköprü A (2020) Potential using of transgenerational resistance against common bacterial blight in Phaseolus vulgaris. Crop Prot. https://doi.org/10.1016/j.cropro.2019.104967 [DOI: 10.1016/j.cropro.2019.104967]
  3. Álvarez-Venegas R, De-la-Peña C, Cullis C (2016) Recent advances of epigenetics in crop biotechnology. Front Plant Sci 7:413 [DOI: 10.3389/fpls.2016.00413]
  4. Asensi-Fabado MA, Amtmann A, Perrella G (2017) Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim Biophys Acta Gene Regul Mech 1860:106–122. https://doi.org/10.1016/j.bbagrm.2016.07.015 [DOI: 10.1016/j.bbagrm.2016.07.015]
  5. Ashe A, Colot V, Oldroyd BP (2021) How does epigenetics influence the course of evolution? Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2020.0111 [DOI: 10.1098/rstb.2020.0111]
  6. Avramova Z (2015) Transcriptional “memory” of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J 83:149–159. https://doi.org/10.1111/tpj.12832 [DOI: 10.1111/tpj.12832]
  7. Avramova Z (2019) Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant Cell Environ 42:983–997. https://doi.org/10.1111/pce.13458 [DOI: 10.1111/pce.13458]
  8. Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563. https://doi.org/10.3390/molecules190913541 [DOI: 10.3390/molecules190913541]
  9. Baldwin IT, Schmelz EA (1996) Immunological “memory” in the induced accumulation of nicotine in wild tobacco. Ecology 77:236–246. https://doi.org/10.2307/2265673 [DOI: 10.2307/2265673]
  10. Banerjee S, Sirohi A, Ansari AA, Gill SS (2017) Role of small RNAs in abiotic stress responses in plants. Plant Gene 11:180–189. https://doi.org/10.1016/j.plgene.2017.04.005 [DOI: 10.1016/j.plgene.2017.04.005]
  11. Bewick AJ, Schmitz RJ (2017) Gene body DNA methylation in plants. Curr Opin Plant Biol 36:103–110. https://doi.org/10.1016/j.pbi.2016.12.007 [DOI: 10.1016/j.pbi.2016.12.007]
  12. Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS ONE 7:e30515. https://doi.org/10.1371/journal.pone.0030515 [DOI: 10.1371/journal.pone.0030515]
  13. Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608. https://doi.org/10.1016/j.plantsci.2007.09.002 [DOI: 10.1016/j.plantsci.2007.09.002]
  14. Burggren W (2016) Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology (Basel). https://doi.org/10.3390/biology5020024 [DOI: 10.3390/biology5020024]
  15. Byeon B, Bilichak A, Kovalchuk I (2019) Transgenerational response to heat stress in the form of differential expression of noncoding RNA fragments in Brassica rapa plants. Plant Genome 12:1–12. https://doi.org/10.3835/plantgenome2018.04.0022 [DOI: 10.3835/plantgenome2018.04.0022]
  16. Cao YY, Gao Y, Sun WJ et al (2013) Role of hydrogen peroxide pretreatment in heat-induced alteration of DNA methylation in cucumber leaves. Sci Hortic (Amsterdam) 151:173–183. https://doi.org/10.1016/j.scienta.2012.12.025 [DOI: 10.1016/j.scienta.2012.12.025]
  17. Chang YN, Zhu C, Jiang J et al (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol. https://doi.org/10.1111/jipb.12901 [DOI: 10.1111/jipb.12901]
  18. Chowdhury MAH, Sultana T, Rahman MA et al (2020) Sulphur fertilization enhanced yield, its uptake, use efficiency and economic returns of Aloe vera L. Heliyon 6:e05726. https://doi.org/10.1016/j.heliyon.2020.e05726 [DOI: 10.1016/j.heliyon.2020.e05726]
  19. Colicchio JM, Kelly JK, Hileman LC (2018) Parental experience modifies the Mimulus methylome. BMC Genomics 19:1–15. https://doi.org/10.1186/s12864-018-5087-x [DOI: 10.1186/s12864-018-5087-x]
  20. Cong W, Miao Y, Xu L et al (2019) Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol 19:1–14. https://doi.org/10.1186/s12870-019-1887-7 [DOI: 10.1186/s12870-019-1887-7]
  21. Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340. https://doi.org/10.1126/sciadv.1501340 [DOI: 10.1126/sciadv.1501340]
  22. Deleris A, Halter T, Navarro L (2016) DNA methylation and demethylation in plant immunity. Annu Rev Phytopathol 54:579–603. https://doi.org/10.1146/annurev-phyto-080615-100308 [DOI: 10.1146/annurev-phyto-080615-100308]
  23. Duarte-Sierra A, Tiznado-Hernández ME, Jha DK et al (2020) Abiotic stress hormesis: an approach to maintain quality, extend storability, and enhance phytochemicals on fresh produce during postharvest. Compr Rev Food Sci Food Saf 19:3659–3682. https://doi.org/10.1111/1541-4337.12628 [DOI: 10.1111/1541-4337.12628]
  24. Fang H, Liu X, Thorn G et al (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400–405. https://doi.org/10.1016/j.bbrc.2013.11.102 [DOI: 10.1016/j.bbrc.2013.11.102]
  25. FAO (2021) The impact of disasters and crises on agriculture and food security: 2021. FAO, Rome
  26. Farman M, Nawaz F, Majeed S et al (2021) Silicon seed priming combined with foliar spray of sulfur regulates photosynthetic and antioxidant systems to confer drought tolerance in maize (Zea mays L.). Silicon. https://doi.org/10.1007/s12633-021-01505-6 [DOI: 10.1007/s12633-021-01505-6]
  27. Fortes AM, Gallusci P (2017) Plant Stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:1–9. https://doi.org/10.3389/fpls.2017.00082 [DOI: 10.3389/fpls.2017.00082]
  28. Fujimoto R, Sasaki T, Ishikawa R et al (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13:9900–9922. https://doi.org/10.3390/ijms13089900 [DOI: 10.3390/ijms13089900]
  29. Gallusci P, Dai Z, Génard M et al (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22:610–623. https://doi.org/10.1016/j.tplants.2017.04.009 [DOI: 10.1016/j.tplants.2017.04.009]
  30. Galviz YCF, Ribeiro RV, Souza GM (2020) Yes, plants do have memory. Theor Exp Plant Physiol 32:195–202. https://doi.org/10.1007/s40626-020-00181-y [DOI: 10.1007/s40626-020-00181-y]
  31. Ganguly DR, Crisp PA, Eichten SR, Pogson BJ (2017) The arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol 175:1893–1912. https://doi.org/10.1104/pp.17.00744 [DOI: 10.1104/pp.17.00744]
  32. Goss MJ, Carvalho M, Brito I (2017) Challenges to agriculture systems. In: Functional diversity of mycorrhiza and sustainable agriculture, pp 1–14
  33. Guo L, Zhou J, Elling AA et al (2008) Histone modifications and expression of light-regulated genes in arabidopsis are cooperatively influenced by changing light conditions. Plant Physiol 147:2070–2083. https://doi.org/10.1104/pp.108.122929 [DOI: 10.1104/pp.108.122929]
  34. Hilker M, Schmülling T (2019) Stress priming, memory, and signalling in plants. Plant Cell Environ 42:753–761. https://doi.org/10.1111/pce.13526 [DOI: 10.1111/pce.13526]
  35. Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626. https://doi.org/10.1016/j.tree.2012.07.011 [DOI: 10.1016/j.tree.2012.07.011]
  36. Huang CY, Wang H, Hu P et al (2019) Small RNAs—big players in plant-microbe interactions. Cell Host Microbe 26:173–182. https://doi.org/10.1016/j.chom.2019.07.021 [DOI: 10.1016/j.chom.2019.07.021]
  37. Ibañez VN, Masuelli RW, Marfil CF (2021) Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens. Heredity (Edinb) 126:50–62. https://doi.org/10.1038/s41437-020-00355-z [DOI: 10.1038/s41437-020-00355-z]
  38. Iriti M, Vitalini S (2021) Plant immunity and crop yield: A sustainable approach in agri-food systems. Vaccines 9:1–3. https://doi.org/10.3390/vaccines9020121 [DOI: 10.3390/vaccines9020121]
  39. Jamiołkowska A (2020) Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy. https://doi.org/10.3390/agronomy10020173 [DOI: 10.3390/agronomy10020173]
  40. Jiang D, Berger F (2017) DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 357(80):1146–1149. https://doi.org/10.1126/science.aan4965 [DOI: 10.1126/science.aan4965]
  41. Jiang L, Zhang M, Ma K (2020) Whole-genome DNA methylation associatedwith differentially expressed genes regulated anthocyanin biosynthesis within flower color chimera of ornamental tree prunus mume. Forests. https://doi.org/10.3390/f11010090 [DOI: 10.3390/f11010090]
  42. Kakoulidou I, Avramidou EV, Baránek M et al (2021) Epigenetics for crop improvement in times of global change. Biology (Basel) 10:1–46. https://doi.org/10.3390/biology10080766 [DOI: 10.3390/biology10080766]
  43. Kalischuk ML, Johnson D, Kawchuk LM (2015) Priming with a double-stranded DNA virus alters Brassica rapa seed architecture and facilitates a defense response. Gene 557:130–137. https://doi.org/10.1016/j.gene.2014.12.016 [DOI: 10.1016/j.gene.2014.12.016]
  44. Kaur A, Grewal A, Sharma P (2018) Comparative analysis of DNA methylation changes in two contrasting wheat genotypes under water deficit. Biol Plant 62:471–478. https://doi.org/10.1007/s10535-018-0786-3 [DOI: 10.1007/s10535-018-0786-3]
  45. Kellenberger RT, Schlüter PM, Schiestl FP (2016) Herbivore-Induced DNA demethylation changes floral signalling and attractiveness to pollinators in brassica rapa. PLoS ONE 11:1–17. https://doi.org/10.1371/journal.pone.0166646 [DOI: 10.1371/journal.pone.0166646]
  46. Kotkar H, Giri A (2020) Plant epigenetics and the ‘intelligent’ priming system to combat biotic stress. Epigenetics of the immune system. Elsevier Inc., Amsterdam, pp 25–38 [DOI: 10.1016/B978-0-12-817964-2.00002-2]
  47. Kou HP, Li Y, Song XX et al (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693. https://doi.org/10.1016/j.jplph.2011.03.017 [DOI: 10.1016/j.jplph.2011.03.017]
  48. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. https://doi.org/10.1016/j.cell.2007.02.005 [DOI: 10.1016/j.cell.2007.02.005]
  49. Kumar S (2018) Epigenomics of plant responses to environmental stress. Epigenomes 2:6. https://doi.org/10.3390/epigenomes2010006 [DOI: 10.3390/epigenomes2010006]
  50. Kumar V, Khare T, Shriram V, Wani SH (2018) Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Rep 37:61–75. https://doi.org/10.1007/s00299-017-2210-4 [DOI: 10.1007/s00299-017-2210-4]
  51. Kuźnicki D, Meller B, Arasimowicz-Jelonek M et al (2019) BABA-induced DNA methylome adjustment to intergenerational defense priming in potato to Phytophthora infestans. Front Plant Sci 10:1–16. https://doi.org/10.3389/fpls.2019.00650 [DOI: 10.3389/fpls.2019.00650]
  52. Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:1–11. https://doi.org/10.1186/s13059-017-1263-6 [DOI: 10.1186/s13059-017-1263-6]
  53. Latrasse D, Jégu T, Li H et al (2017) MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol 18:1–19. https://doi.org/10.1186/s13059-017-1261-8 [DOI: 10.1186/s13059-017-1261-8]
  54. Li X, Brestic M, Tan DX et al (2018) Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. J Pineal Res 64:1–16. https://doi.org/10.1111/jpi.12453 [DOI: 10.1111/jpi.12453]
  55. Lindermayr C, Rudolf EE, Durner J, Groth M (2020) Interactions between metabolism and chromatin in plant models. Mol Metab. https://doi.org/10.1016/j.molmet.2020.01.015 [DOI: 10.1016/j.molmet.2020.01.015]
  56. Locato V, Cimini S, De Gara L (2018) ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. J Exp Bot 69:3373–3391. https://doi.org/10.1093/jxb/ery168/4990821 [DOI: 10.1093/jxb/ery168/4990821]
  57. Lukić N, Kukavica B, Davidović-Plavšić B et al (2020) Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104166 [DOI: 10.1016/j.envexpbot.2020.104166]
  58. Luna E, Bruce TJA, Roberts MR et al (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853. https://doi.org/10.1104/pp.111.187468 [DOI: 10.1104/pp.111.187468]
  59. Luo JY, Pan XL, Peng TC et al (2016) DNA methylation patterns of banana leaves in response to Fusarium oxysporum f. sp. cubense tropical race 4. J Integr Agric 15:2736. https://doi.org/10.1016/S2095-3119(16)61495-8 [DOI: 10.1016/S2095-3119(16)61495-8]
  60. Ma L, Sun X, Kong X et al (2015) Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics 112:63–82. https://doi.org/10.1016/j.jprot.2014.08.009 [DOI: 10.1016/j.jprot.2014.08.009]
  61. Mager S, Ludewig U (2018) Massive loss of DNA methylation in nitrogen-, but not in phosphorus-deficient Zea mays roots is poorly correlated with gene expression differences. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.00497 [DOI: 10.3389/fpls.2018.00497]
  62. Magno Massuia de Almeida L, Avice JC, Morvan-Bertrand A, et al (2021) High temperature patterns at the onset of seed maturation determine seed yield and quality in oilseed rape (Brassica napus L.) in relation to sulphur nutrition. Environ Exp Bot 185. https://doi.org/10.1016/j.envexpbot.2021.104400
  63. Malik NAA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci. https://doi.org/10.3390/ijms21030963 [DOI: 10.3390/ijms21030963]
  64. Martínez-Aguilar K, Hernández-Chávez JL, Alvarez-Venegas R (2021) Priming of seeds with INA and its transgenerational effect in common bean (Phaseolus vulgaris L.) plants. Plant Sci. https://doi.org/10.1016/j.plantsci.2021.110834 [DOI: 10.1016/j.plantsci.2021.110834]
  65. Martínez-Aguilar K, Ramírez-Carrasco G, Hernández-Chávez JL et al (2016) Use of BABA and INA as activators of a primed state in the common bean (Phaseolus vulgaris L.). Front Plant Sci 7:1–17. https://doi.org/10.3389/fpls.2016.00653 [DOI: 10.3389/fpls.2016.00653]
  66. Meller B, Kuźnicki D, Arasimowicz-Jelonek M et al (2018) BABA-primed histone modifications in potato for intergenerational resistance to phytophthora infestans. Front Plant Sci 9:1–17. https://doi.org/10.3389/fpls.2018.01228 [DOI: 10.3389/fpls.2018.01228]
  67. Migicovsky Z, Kovalchuk I (2015) Transgenerational inheritance of epigenetic response to cold in Arabidopsis thaliana. Biocatal Agric Biotechnol 4:1–10. https://doi.org/10.1016/j.bcab.2014.09.001 [DOI: 10.1016/j.bcab.2014.09.001]
  68. Migicovsky Z, Yao Y, Kovalchuk I (2014) Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal Behav 9:1–11. https://doi.org/10.4161/psb.27971 [DOI: 10.4161/psb.27971]
  69. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274 [DOI: 10.1016/j.pbi.2011.03.004]
  70. Mohanta TK, Bashir T, Hashem A, Abd-Allah EF (2017) Systems biology approach in plant abiotic stresses. Plant Physiol Biochem 121:58–73. https://doi.org/10.1016/j.plaphy.2017.10.019 [DOI: 10.1016/j.plaphy.2017.10.019]
  71. Parejo-Farnés C, Aparicio A, Albaladejo RG (2019) An approach to the ecological epigenetics in plants. Ecosistemas 28:69–74. https://doi.org/10.7818/ECOS.1605 [DOI: 10.7818/ECOS.1605]
  72. Pastor V, Luna E, Mauch-Mani B et al (2013) Primed plants do not forget. Environ Exp Bot 94:46–56. https://doi.org/10.1016/j.envexpbot.2012.02.013 [DOI: 10.1016/j.envexpbot.2012.02.013]
  73. Pavangadkar K, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol 74:183–200. https://doi.org/10.1007/s11103-010-9665-9 [DOI: 10.1007/s11103-010-9665-9]
  74. Pazzaglia J, Reusch TBH, Terlizzi A et al (2021) Phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival. Evol Appl 14:1181–1201. https://doi.org/10.1111/eva.13212 [DOI: 10.1111/eva.13212]
  75. Perrone A, Martinelli F (2020) Plant stress biology in epigenomic era. Plant Sci 294:110376. https://doi.org/10.1016/j.plantsci.2019.110376 [DOI: 10.1016/j.plantsci.2019.110376]
  76. Polkowska-kowalczyk L, Lewandowska-Gnatowska E, Polkowska-kowalczyk L et al (2014) Is DNA methylation modulated by wounding-induced oxidative burst in maize? Plant Physiol Biochem 82:202–208. https://doi.org/10.1016/j.plaphy.2014.06.003 [DOI: 10.1016/j.plaphy.2014.06.003]
  77. Racette K, Rowland D, Tillman B et al (2019) Transgenerational stress memory in seed and seedling vigor of peanut (Arachis hypogaea L.) varies by genotype. Environ Exp Bot 162:541–549. https://doi.org/10.1016/j.envexpbot.2019.03.006 [DOI: 10.1016/j.envexpbot.2019.03.006]
  78. Ragab G, Saad-Allah K (2021) Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. J Plant Growth Regul 40:1894–1902. https://doi.org/10.1007/s00344-020-10240-y [DOI: 10.1007/s00344-020-10240-y]
  79. Rahavi MR, Migicovsky Z, Titov V, Kovalchuk I (2011) Transgenerational adaptation to heavy metal salts in arabidopsis. Front Plant Sci 2:1–10. https://doi.org/10.3389/fpls.2011.00091 [DOI: 10.3389/fpls.2011.00091]
  80. Ramírez-Carrasco G, Martínez-Aguilar K, Alvarez-Venegas R (2017) Transgenerational defense priming for crop protection against plant pathogens: a hypothesis. Front Plant Sci 8:1–8. https://doi.org/10.3389/fpls.2017.00696 [DOI: 10.3389/fpls.2017.00696]
  81. Reza Rahavi SM, Kovalchuk I (2013) Transgenerational changes in Arabidopsis thaliana in response to UV-C, heat and cold. Biocatal Agric Biotechnol 2:226–233. https://doi.org/10.1016/j.bcab.2013.05.001 [DOI: 10.1016/j.bcab.2013.05.001]
  82. Rhaman MS, Imran S, Rauf F et al (2020) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10:1–17. https://doi.org/10.1186/s13072-018-0251-8 [DOI: 10.1186/s13072-018-0251-8]
  83. Sáenz-de la OD, Cedillo-Jimenez CA, García-Ortega LF et al (2020) Response of transgenic tobacco overexpressing the CchGLP gene to cadmium and aluminium: phenotypic and microRNAs expression changes. Physiol Mol Biol Plants 26:3–13. https://doi.org/10.1007/s12298-019-00716-x
  84. Saravana Kumar RM, Wang Y, Zhang X et al (2020) Redox components: key regulators of epigenetic modifications in plants. Int J Mol Sci 21:1419. https://doi.org/10.3390/ijms21041419 [DOI: 10.3390/ijms21041419]
  85. Shafiq BA, Nawaz F, Majeed S et al (2021) Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress. J Soil Sci Plant Nutr 21:2229–2241. https://doi.org/10.1007/s42729-021-00516-x [DOI: 10.1007/s42729-021-00516-x]
  86. Slaughter A, Daniel X, Flors V et al (2012) Descendants of primed arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843. https://doi.org/10.1104/pp.111.191593 [DOI: 10.1104/pp.111.191593]
  87. Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254. https://doi.org/10.1007/s00425-007-0612-1 [DOI: 10.1007/s00425-007-0612-1]
  88. Srivastava AK, Suresh Kumar J, Suprasanna P (2021) Seed ‘primeomics’: plants memorize their germination under stress. Biol Rev 96:1723–1743. https://doi.org/10.1111/brv.12722 [DOI: 10.1111/brv.12722]
  89. Sun C, Ali K, Yan K et al (2021) Exploration of epigenetics for improvement of drought and other stress resistance in crops: a review. Plants 10:1–16. https://doi.org/10.3390/plants10061226 [DOI: 10.3390/plants10061226]
  90. Taagen E, Bogdanove AJ, Sorrells ME (2020) Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci 25:455–465. https://doi.org/10.1016/j.tplants.2019.12.017 [DOI: 10.1016/j.tplants.2019.12.017]
  91. Tabassum T, Farooq M, Ahmad R et al (2017) Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiol Biochem 118:362–369. https://doi.org/10.1016/j.plaphy.2017.07.007 [DOI: 10.1016/j.plaphy.2017.07.007]
  92. Tang X, Wang Q, Huang X (2018) Chilling-induced DNA demethylation is associated with the cold tolerance of Hevea brasiliensis. BMC Plant Biol 18:1–16. https://doi.org/10.1186/s12870-018-1276-7 [DOI: 10.1186/s12870-018-1276-7]
  93. Teklić T, Parađiković N, Špoljarević M et al (2021) Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann Appl Biol 178:169–191. https://doi.org/10.1111/aab.12651 [DOI: 10.1111/aab.12651]
  94. Tirnaz S, Batley J (2019) Epigenetics: potentials and challenges in crop breeding. Mol Plant 12:1309–1311. https://doi.org/10.1016/j.molp.2019.09.006 [DOI: 10.1016/j.molp.2019.09.006]
  95. Trewavas T (2016) Plant intelligence: an overview. Bioscience 66:542–551. https://doi.org/10.1093/biosci/biw048 [DOI: 10.1093/biosci/biw048]
  96. Tricker PJ (2015) Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. Front Plant Sci 6:1–6. https://doi.org/10.3389/fpls.2015.00699 [DOI: 10.3389/fpls.2015.00699]
  97. Turgut-Kara N, Arikan B, Celik H (2020) Epigenetic memory and priming in plants. Genetica 148:47–54. https://doi.org/10.1007/s10709-020-00093-4 [DOI: 10.1007/s10709-020-00093-4]
  98. Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG et al (2017) Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.01762 [DOI: 10.3389/fpls.2017.01762]
  99. Vázquez-Hernández MC, Parola-Contreras I, Montoya-Gómez LM et al (2019) Eustressors: chemical and physical stress factors used to enhance vegetables production. Sci Hortic (Amsterdam) 250:223–229. https://doi.org/10.1016/j.scienta.2019.02.053 [DOI: 10.1016/j.scienta.2019.02.053]
  100. Villagómez-Aranda AL, García-Ortega LF, Torres-Pacheco I, Guevara-González RG (2021) Whole-genome dna methylation analysis in hydrogen peroxide overproducing transgenic tobacco resistant to biotic and abiotic stresses. Plants 10:1–14. https://doi.org/10.3390/plants10010178 [DOI: 10.3390/plants10010178]
  101. Vos R, Bellù LG (2019) Global trends and challenges to food and agriculture into the 21st century. In: Sustainable food and agriculture, pp 11–30
  102. Walters DR, Paterson L, Walters DR, Paterson L (2012) Parents lend a helping hand to their offspring in plant defence parents lend a helping hand to their offspring in plant defence. Biol Lett 8:871–873. https://doi.org/10.1098/rsbl.2012.0416 [DOI: 10.1098/rsbl.2012.0416]
  103. Wang CC, Wang CC, Xu W et al (2018) Epigenetic changes in the regulation of Nicotiana tabacum response to cucumber mosaic virus infection and symptom recovery through single-base resolution methylomes. Viruses 10:402–418. https://doi.org/10.3390/v10080402 [DOI: 10.3390/v10080402]
  104. Wang J, Meng X, Dobrovolskaya OB et al (2017) Non-coding RNAs and their roles in stress response in plants Wang J et al / miRNA and lncRNA in Plant Stress Response. Genomics, Proteomics Bioinforma 15:301–312. https://doi.org/10.1016/j.gpb.2017.01.007 [DOI: 10.1016/j.gpb.2017.01.007]
  105. Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (review). Oncol Rep 37:3–9. https://doi.org/10.3892/or.2016.5236 [DOI: 10.3892/or.2016.5236]
  106. Weinhold A (2018) Transgenerational stress-adaption: an opportunity for ecological epigenetics. Plant Cell Rep 37:3–9. https://doi.org/10.1007/s00299-017-2216-y [DOI: 10.1007/s00299-017-2216-y]
  107. Williams BP, Gehring M (2017) Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit. Nat Commun. https://doi.org/10.1038/s41467-017-02219-3 [DOI: 10.1038/s41467-017-02219-3]
  108. Xin C, Chi J, Zhao Y et al (2019) Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Sci 284:16–24. https://doi.org/10.1016/j.plantsci.2019.03.021 [DOI: 10.1016/j.plantsci.2019.03.021]
  109. Yaish MW, Al-Lawati A, Al-Harrasi I, Patankar HV (2018) Genome-wide DNA methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula). BMC Genomics 19:1–17. https://doi.org/10.1186/s12864-018-4484-5 [DOI: 10.1186/s12864-018-4484-5]
  110. Yamamuro C, Zhu J, Yang Z (2016) Epigenetic modifications and plant hormone action. Mol Plant 9:57–70 [DOI: 10.1016/j.molp.2015.10.008]
  111. Yang D, Huang Z, Jin W et al (2018) DNA methylation: a new regulator of phenolic acids biosynthesis in Salvia miltiorrhiza. Ind Crops Prod 124:402–411. https://doi.org/10.1016/j.indcrop.2018.07.046 [DOI: 10.1016/j.indcrop.2018.07.046]
  112. Yi H, Li L (2013) DNA methylation changes in response to sulfur dioxide stress in arabidopsis plants. Proc Environ Sci 18:37–42. https://doi.org/10.1016/j.proenv.2013.04.006 [DOI: 10.1016/j.proenv.2013.04.006]
  113. Yu J, Xu F, Wei Z et al (2020) Epigenomic landscape and epigenetic regulation in maize. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03549-5 [DOI: 10.1007/s00122-020-03549-5]
  114. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201. https://doi.org/10.1016/j.cell.2006.08.003 [DOI: 10.1016/j.cell.2006.08.003]
  115. Zhang Q, Liang Z, Cui X et al (2018) N 6-methyladenine DNA methylation in japonica and indica rice genomes and its association with gene expression, plant development, and stress responses. Mol Plant 11:1492–1508. https://doi.org/10.1016/j.molp.2018.11.005 [DOI: 10.1016/j.molp.2018.11.005]
  116. Zhou C, Wang C, Liu H et al (2018) Identification and analysis of adenine N 6-methylation sites in the rice genome. Nat Plants 4:554–563. https://doi.org/10.1038/s41477-018-0214-x [DOI: 10.1038/s41477-018-0214-x]
  117. Zhou M, Sng NJ, Lefrois CE et al (2019) Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 20:1–17. https://doi.org/10.1186/s12864-019-5554-z [DOI: 10.1186/s12864-019-5554-z]
  118. Zuo J, Wang Y, Zhu B et al (2017) Comparative analysis of DNA methylation reveals specific regulations on ethylene pathway in tomato fruit. Genes (Basel) 8:1–15

Grants

  1. 283259/SEP-CONACYT

MeSH Term

Adaptation, Physiological
Climate Change
Crops, Agricultural
Epigenomics
Plant Breeding
Stress, Physiological

Word Cloud

Created with Highcharts 10.0.0stressmemoryplanteustressorsbreedingstrategiesprimingEpigeneticpotentialusePlantscontinuouslyexposedconditionsdevelopedsophisticatedelegantsurvivalreflectedphenotypicplasticitycapacityacquisitionmechanismsplaycriticalrolemodulatinggeneexpressionresponsesallowingmalleabilityreversibilitystabilityheritabilityfavourablephenotypesenhanceperformanceConsideringurgencyimproveagriculturalsystemgoingimpactingclimatechangesustainablerelycontrolledenhancingdesiredcharacteristicsyieldshapingtolerancecropsHoweverpurposesnecessaryfocuscapableestablishingstableepigeneticmarksgeneratetransgenerationalstimulatestateplantsfacechangingenvironmentActivatingmemory:toolsEustressorsPlantStress

Similar Articles

Cited By