Assessing the Spatiotemporal Spread Pattern of the COVID-19 Pandemic in Malaysia.

Yoon Ling Cheong, Sumarni Mohd Ghazali, Mohd Khairuddin Bin Che Ibrahim, Chee Cheong Kee, Nuur Hafizah Md Iderus, Qistina Binti Ruslan, Balvinder Singh Gill, Florence Chi Hiong Lee, Kuang Hock Lim
Author Information
  1. Yoon Ling Cheong: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  2. Sumarni Mohd Ghazali: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  3. Mohd Khairuddin Bin Che Ibrahim: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  4. Chee Cheong Kee: Sector for Biostatistics and Data Repository, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Malaysia.
  5. Nuur Hafizah Md Iderus: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  6. Qistina Binti Ruslan: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  7. Balvinder Singh Gill: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  8. Florence Chi Hiong Lee: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.
  9. Kuang Hock Lim: Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia.

Abstract

Introduction: The unprecedented COVID-19 Pandemic has greatly affected human health and socioeconomic backgrounds. This study examined the spatiotemporal spread pattern of the COVID-19 Pandemic in Malaysia from the index case to 291,774 cases in 13 months, emphasizing on the spatial autocorrelation of the high-risk cluster events and the spatial scan clustering pattern of transmission.
Methodology: We obtained the confirmed cases and deaths of COVID-19 in Malaysia from the official GitHub repository of Malaysia's Ministry of Health from January 25, 2020 to February 24, 2021, 1 day before the national vaccination program was initiated. All analyses were based on the daily cumulated cases, which are derived from the sum of retrospective 7 days and the current day for smoothing purposes. We examined the daily global, local spatial autocorrelation and scan statistics of COVID-19 cases at district level using Moran's I and SaTScan���.
Results: At the initial stage of the outbreak, Moran's I index > 0.5 ( < 0.05) was observed. Local Moran's I depicted the high-high cluster risk expanded from west to east of Malaysia. The cases surged exponentially after September 2020, with the high-high cluster in Sabah, from Kinabatangan on September 1 (cumulative cases = 9,354; Moran's I = 0.34; < 0.05), to 11 districts on October 19 (cumulative cases = 21,363, Moran's = 0.52, < 0.05). The most likely cluster identified from space-time scanning was centered in Jasin, Melaka (RR = 11.93; < 0.001) which encompassed 36 districts with a radius of 178.8 km, from November 24, 2020 to February 24, 2021, followed by the Sabah cluster.
Discussion and Conclusion: Both analyses complemented each other in depicting underlying spatiotemporal clustering risk, giving detailed space-time spread information at district level. This daily analysis could be valuable insight into real-time reporting of transmission intensity, and alert for the public to avoid visiting the high-risk areas during the Pandemic. The spatiotemporal transmission risk pattern could be used to monitor the spread of the Pandemic.

Keywords

References

  1. Lancet Reg Health West Pac. 2021 Dec;17:100295 [PMID: 34704083]
  2. Int J Environ Res Public Health. 2019 Jul 15;16(14): [PMID: 31311073]
  3. Int J Infect Dis. 2021 Apr;105:675-685 [PMID: 33711521]
  4. Proc Biol Sci. 2019 Oct 9;286(1912):20191867 [PMID: 31594497]
  5. Healthcare (Basel). 2021 Sep 16;9(9): [PMID: 34574997]
  6. Reg Sci Policy Prac. 2020 Dec;12(6):1063-1103 [PMID: 38607800]
  7. MMWR Morb Mortal Wkly Rep. 2021 Jun 25;70(25):922-927 [PMID: 34166331]
  8. Am J Public Health. 1998 Sep;88(9):1377-80 [PMID: 9736881]
  9. BMJ. 2021 Nov 17;375:e068302 [PMID: 34789505]
  10. Int J Infect Dis. 2020 May;94:96-102 [PMID: 32251789]
  11. Sci Rep. 2018 Jun 14;8(1):9090 [PMID: 29904141]
  12. Geospat Health. 2014 Nov;9(1):131-40 [PMID: 25545931]
  13. Geospat Health. 2021 May 05;16(1): [PMID: 33969966]
  14. BMJ. 2021 Nov 28;375:e067508 [PMID: 34840136]
  15. Int J Environ Res Public Health. 2020 Jul 30;17(15): [PMID: 32751669]
  16. Int J Infect Dis. 2020 Dec;101:409-411 [PMID: 33075527]
  17. PLoS Comput Biol. 2021 May 27;17(5):e1008959 [PMID: 34043622]
  18. Spat Spatiotemporal Epidemiol. 2021 Nov;39:100430 [PMID: 34774254]
  19. J Infect Public Health. 2021 Aug;14(8):1051-1064 [PMID: 34174535]
  20. Int J Infect Dis. 2020 Aug;97:108-116 [PMID: 32497808]
  21. Int J Infect Dis. 2020 Sep;98:328-333 [PMID: 32634584]
  22. Nat Rev Immunol. 2021 Oct;21(10):626-636 [PMID: 34373623]
  23. Spat Spatiotemporal Epidemiol. 2020 Aug;34:100354 [PMID: 32807396]
  24. J Glob Health. 2020 Dec;10(2):0203105 [PMID: 33403108]
  25. Front Public Health. 2021 May 07;9:560592 [PMID: 34026696]
  26. Int J Infect Dis. 2020 Sep;98:153-160 [PMID: 32619761]
  27. Rev Med Virol. 2022 Jul;32(4):e2313 [PMID: 34755408]
  28. PLoS One. 2020 Dec 31;15(12):e0244351 [PMID: 33382758]
  29. Med J Malaysia. 2021 Jan;76(1):1-4 [PMID: 33510100]
  30. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  31. Sci Adv. 2020 Aug 14;6(33):eabc1202 [PMID: 32851189]
  32. Int J Environ Res Public Health. 2021 Jun 18;18(12): [PMID: 34207205]
  33. PLoS One. 2021 Jun 9;16(6):e0252373 [PMID: 34106993]
  34. Reg Sci Policy Prac. 2020 Dec;12(6):1047-1062 [PMID: 38607811]
  35. Front Public Health. 2021 Feb 11;9:574135 [PMID: 33643985]
  36. Biometrika. 1950 Jun;37(1-2):178-81 [PMID: 15420264]
  37. Int J Health Geogr. 2009 Oct 12;8:55 [PMID: 19822013]
  38. Science. 2021 May 21;372(6544):821-826 [PMID: 33853971]
  39. Med J Malaysia. 2021 Nov;76(6):783-791 [PMID: 34806661]
  40. Sci Rep. 2021 Nov 11;11(1):22105 [PMID: 34764315]

MeSH Term

COVID-19
Humans
Malaysia
Pandemics
Retrospective Studies
Spatial Analysis

Word Cloud

Created with Highcharts 10.0.0cases0COVID-19Moran'scluster=pandemicMalaysiaspatial<spatiotemporalspreadpatternautocorrelationscantransmission202024daily05riskspace-timeexaminedindexhigh-riskclusteringFebruary20211dayanalysesdistrictlevelhigh-highSeptemberSabahcumulative11districtsIntroduction:unprecedentedgreatlyaffectedhumanhealthsocioeconomicbackgroundsstudycase29177413monthsemphasizingeventsMethodology:obtainedconfirmeddeathsofficialGitHubrepositoryMalaysia'sMinistryHealthJanuary25nationalvaccinationprograminitiatedbasedcumulatedderivedsumretrospective7dayscurrentsmoothingpurposesgloballocalstatisticsusingSaTScan���Results:initialstageoutbreak>5observedLocaldepictedexpandedwesteastsurgedexponentiallyKinabatangan935434October192136352likelyidentifiedscanningcenteredJasinMelakaRR93001encompassed36radius1788kmNovemberfollowedDiscussionConclusion:complementeddepictingunderlyinggivingdetailedinformationanalysisvaluableinsightreal-timereportingintensityalertpublicavoidvisitingareasusedmonitorAssessingSpatiotemporalSpreadPatternPandemicLISASaTScan

Similar Articles

Cited By (6)