Therapeutic Effects of Bifidobacterium breve YH68 in Combination with Vancomycin and Metronidazole in a Primary Clostridioides difficile-Infected Mouse Model.

Jingpeng Yang, Lingtong Meng, Hong Yang
Author Information
  1. Jingpeng Yang: School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China. ORCID
  2. Lingtong Meng: School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
  3. Hong Yang: State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong Universitygrid.16821.3c, Shanghai, China. ORCID

Abstract

Probiotics have been widely used to prevent primary Clostridioides difficile infection (pCDI); however, there are fewer studies on their therapeutic aspects for pCDI. In this study, high doses of Bifidobacterium breve YH68 were used alone or in combination with vancomycin (VAN) and metronidazole (MTR) to treat pCDI mice. Mouse feces were collected from preinfection, postinfection, and posttreatment stages. Subsequently, the C. difficile number and toxin level in feces were detected by plate count method and C. difficile toxin enzyme-linked immunosorbent assay (ELISA). Simultaneously, 16S rRNA amplicon sequencing and untargeted metabolomics were employed to explore the changing patterns and characteristic markers of fecal microbiota and metabolome. The results indicated that high doses of YH68 used alone or in combination with VAN and MTR were more effective than the combination of VAN and MTR for pCDI mice and improved their final survival rate. This probiotic strain and its combination with antibiotics reduced C. difficile numbers and toxin levels in the feces, downregulated proinflammatory cytokine levels in colon tissue, and alleviated cecum tissue hyperplasia. Meanwhile, the level of fecal microbiota diversity increased significantly in pCDI mice after treatment, with an increase in the relative abundance of , , , unidentified, and , and this process was accompanied by elevated levels of secondary bile acid, butyric acid, and gentamicin C1a and reduced levels of primary bile acid and indoles. Most notably, the combination of YH68 with VAN and MTR diminished the damaging effect of antibiotic treatment alone on the microbiota. Our findings suggested that high doses of YH68 used in combination with VAN and MTR have a better therapeutic effect on pCDI mice than the combination of VAN and MTR alone. Many studies have focused on the preventive effects of probiotics against pCDI, but few studies have investigated in depth the therapeutic effects of probiotics, especially at the postinfection stage. We demonstrated that high doses of Bifidobacterium breve YH68 used alone or in combination with vancomycin (VAN) and metronidazole (MTR) exerted outstanding efficacy in the treatment of pCDI mice. This probiotic-antibiotic combination regimen has the potential to be a new option for the clinical treatment of pCDI.

Keywords

References

  1. Nat Med. 2017 Jan;23(1):107-113 [PMID: 27892954]
  2. Analyst. 2006 Oct;131(10):1075-8 [PMID: 17003852]
  3. Food Funct. 2019 Mar 20;10(3):1595-1608 [PMID: 30806428]
  4. ISME J. 2014 Jul;8(7):1403-17 [PMID: 24500617]
  5. Cell. 2016 Jun 2;165(6):1332-1345 [PMID: 27259147]
  6. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  7. Gut Microbes. 2021 Jan-Dec;13(1):1979882 [PMID: 34724858]
  8. Nat Commun. 2021 Apr 14;12(1):2241 [PMID: 33854066]
  9. Adv Nutr. 2019 Jan 1;10(suppl_1):S49-S66 [PMID: 30721959]
  10. Gastroenterology. 2017 Jun;152(8):1889-1900.e9 [PMID: 28192108]
  11. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  12. Nat Protoc. 2010 Jun;5(6):1005-18 [PMID: 20448546]
  13. Front Microbiol. 2018 Dec 21;9:2976 [PMID: 30619112]
  14. Gut Microbes. 2020 Sep 2;11(5):1231-1245 [PMID: 32167023]
  15. Nat Commun. 2021 Jan 19;12(1):462 [PMID: 33469019]
  16. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  17. Appl Environ Microbiol. 2020 Mar 18;86(7): [PMID: 31953338]
  18. Mol Nutr Food Res. 2013 Mar;57(3):523-35 [PMID: 23349065]
  19. Gut. 2014 May;63(5):727-35 [PMID: 23804561]
  20. Antimicrob Agents Chemother. 2019 Jun 24;63(7): [PMID: 30988143]
  21. Gastroenterology. 2008 Dec;135(6):1984-92 [PMID: 18848941]
  22. Nat Rev Gastroenterol Hepatol. 2019 Apr;16(4):202-204 [PMID: 30692658]
  23. PLoS Pathog. 2018 Sep 12;14(9):e1007191 [PMID: 30208103]
  24. JAMA. 2018 Aug 07;320(5):499-500 [PMID: 30027207]
  25. Clin Infect Dis. 2018 Mar 19;66(7):e1-e48 [PMID: 29462280]
  26. Front Microbiol. 2020 Jul 31;11:1863 [PMID: 32849451]
  27. Front Microbiol. 2018 May 08;9:888 [PMID: 29867801]
  28. Nat Microbiol. 2019 Feb;4(2):293-305 [PMID: 30531976]
  29. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  30. Crit Rev Clin Lab Sci. 2019 Nov;56(7):493-509 [PMID: 31411909]
  31. mSystems. 2019 Mar 19;4(2): [PMID: 30944877]
  32. FEMS Microbiol Ecol. 2007 Nov;62(2):142-60 [PMID: 17892477]
  33. Front Microbiol. 2016 Apr 22;7:577 [PMID: 27148250]
  34. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7996-E8005 [PMID: 27864511]
  35. Cell Chem Biol. 2019 Jan 17;26(1):27-34.e4 [PMID: 30482679]
  36. NPJ Biofilms Microbiomes. 2021 Feb 5;7(1):16 [PMID: 33547298]
  37. N Engl J Med. 2018 Jun 28;378(26):2535-2536 [PMID: 29860912]
  38. Nature. 2021 Nov;599(7885):458-464 [PMID: 34325466]
  39. Free Radic Biol Med. 2005 Mar 15;38(6):763-72 [PMID: 15721987]
  40. Microbiome. 2019 Jan 23;7(1):9 [PMID: 30674356]
  41. BMC Microbiol. 2011 Apr 28;11:86 [PMID: 21527013]
  42. Front Cell Infect Microbiol. 2019 Aug 07;9:288 [PMID: 31440478]
  43. Front Microbiol. 2018 Oct 09;9:2396 [PMID: 30356740]
  44. J Funct Foods. 2017 Jun;33:194-201 [PMID: 30416539]
  45. Cell. 2020 Jun 25;181(7):1452-1454 [PMID: 32589955]
  46. Mol Biochem Parasitol. 2012 Oct;185(2):145-50 [PMID: 22944170]
  47. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  48. Microb Biotechnol. 2019 Nov;12(6):1109-1125 [PMID: 31006995]
  49. Nature. 2015 Jan 8;517(7533):205-8 [PMID: 25337874]
  50. Front Microbiol. 2018 Aug 21;9:1948 [PMID: 30186263]
  51. Nat Rev Dis Primers. 2016 Apr 07;2:16020 [PMID: 27158839]
  52. J Med Microbiol. 2011 Jun;60(Pt 6):817-827 [PMID: 21330412]
  53. ISME J. 2021 Dec;15(12):3623-3635 [PMID: 34155333]
  54. Ann Intern Med. 2018 Oct 2;169(7):ITC49-ITC64 [PMID: 30285209]
  55. Nat Microbiol. 2019 Jan;4(1):35-45 [PMID: 30546094]
  56. Front Microbiol. 2018 Dec 04;9:2953 [PMID: 30564210]
  57. Nature. 2021 May;593(7858):261-265 [PMID: 33911281]

MeSH Term

Animals
Anti-Bacterial Agents
Bifidobacterium breve
Clostridioides
Clostridioides difficile
Clostridium Infections
Disease Models, Animal
Feces
Metronidazole
Mice
RNA, Ribosomal, 16S
Vancomycin

Chemicals

Anti-Bacterial Agents
RNA, Ribosomal, 16S
Metronidazole
Vancomycin

Word Cloud

Created with Highcharts 10.0.0pCDIcombinationVANMTRYH68useddifficilealonemicehighdosesBifidobacteriumbrevemicrobiotalevelstreatmentClostridioidesstudiestherapeuticvancomycinmetronidazolefecesCtoxinfecalacidprimaryMousepostinfectionlevelmetabolomereducedtissuebileeffecteffectsprobioticsProbioticswidelypreventinfectionhoweverfeweraspectsstudytreatcollectedpreinfectionposttreatmentstagesSubsequentlynumberdetectedplatecountmethodenzyme-linkedimmunosorbentassayELISASimultaneously16SrRNAampliconsequencinguntargetedmetabolomicsemployedexplorechangingpatternscharacteristicmarkersresultsindicatedeffectiveimprovedfinalsurvivalrateprobioticstrainantibioticsnumbersdownregulatedproinflammatorycytokinecolonalleviatedcecumhyperplasiaMeanwhilediversityincreasedsignificantlyincreaserelativeabundanceunidentifiedprocessaccompaniedelevatedsecondarybutyricgentamicinC1aindolesnotablydiminisheddamagingantibioticfindingssuggestedbetterManyfocusedpreventiveinvestigateddepthespeciallystagedemonstratedexertedoutstandingefficacyprobiotic-antibioticregimenpotentialnewoptionclinicalTherapeuticEffectsCombinationVancomycinMetronidazolePrimarydifficile-InfectedModel

Similar Articles

Cited By