Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system.

Michal Knapp, Michal Řeřicha, Danny Haelewaters, Ezequiel González
Author Information
  1. Michal Knapp: Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic. ORCID
  2. Michal Řeřicha: Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
  3. Danny Haelewaters: Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium. ORCID
  4. Ezequiel González: Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic. ORCID

Abstract

Winter represents a challenging period for insects inhabiting temperate regions. A plethora of studies have investigated how environmental conditions such as temperature affect insect overwintering success. However, only a few studies have focused on biotic factors and the mechanisms affecting the overwintering performance of insects. Here, we investigated the effects of the parasitic fungus on the overwintering performance and immune system functioning of the invasive ladybird . Winter survival was significantly lower for infected than for uninfected ladybirds. Body mass loss during overwintering tends to be higher for infected individuals compared to uninfected ones and for larger ladybirds. In addition, parasitic infection reduced post-winter longevity without food in male but not female ladybirds. Total haemocyte and protein concentration as well as antimicrobial activity against significantly decreased during ladybird overwintering. However, haemolymph parameters were only poorly affected by infection, with the exception of antimicrobial activity against that tended to be higher in infected ladybirds. Interestingly, none of the pre-winter haemolymph parameters were good predictors of ladybird winter survival. Overall, our results indicate that energy exhaustion unrelated to immune system challenge is the most probable explanation for increased overwintering mortality in infected ladybirds.

Keywords

Associated Data

Dryad | 10.5061/dryad.jq2bvq8b6
figshare | 10.6084/m9.figshare.c.5899275

References

  1. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):61-9 [PMID: 18926977]
  2. Ecol Evol. 2021 Mar 11;11(9):4267-4275 [PMID: 33976809]
  3. PeerJ. 2018 May 28;6:e4905 [PMID: 29868291]
  4. J Exp Biol. 2018 Jul 1;221(Pt 13): [PMID: 29967267]
  5. Parasite Immunol. 2015 May;37(5):233-41 [PMID: 25677076]
  6. Proc Biol Sci. 2022 Mar 30;289(1971):20212538 [PMID: 35317669]
  7. J Exp Biol. 2010 Mar 15;213(6):980-94 [PMID: 20190123]
  8. Sci Rep. 2021 May 12;11(1):10087 [PMID: 33980970]
  9. J Insect Physiol. 2000 Mar;46(3):343-351 [PMID: 12770239]
  10. J Therm Biol. 2015 Dec;54:5-11 [PMID: 26615721]
  11. Sci Rep. 2020 Mar 18;10(1):4970 [PMID: 32188924]
  12. PeerJ. 2020 Nov 4;8:e10110 [PMID: 33194385]
  13. Insect Sci. 2022 Apr;29(2):531-538 [PMID: 34255924]
  14. J Invertebr Pathol. 2007 Mar;94(3):196-203 [PMID: 17188291]
  15. Adv Genet. 2016;94:307-64 [PMID: 27131329]
  16. J Exp Zool A Ecol Integr Physiol. 2017 Jun;327(5):222-234 [PMID: 28317266]
  17. Biol Rev Camb Philos Soc. 2018 Nov;93(4):1891-1914 [PMID: 29749114]
  18. Sci Rep. 2018 Oct 29;8(1):15966 [PMID: 30374135]
  19. Arthropod Struct Dev. 2021 Jan;60:100998 [PMID: 33249365]
  20. Biol Lett. 2012 Apr 23;8(2):308-11 [PMID: 21937493]
  21. J Insect Physiol. 2015 Aug;79:1-9 [PMID: 25982520]
  22. PLoS One. 2016 Mar 15;11(3):e0151459 [PMID: 26978071]
  23. Sci Rep. 2018 Oct 29;8(1):15938 [PMID: 30374104]
  24. Biol Rev Camb Philos Soc. 2015 Feb;90(1):214-35 [PMID: 24720862]
  25. Annu Rev Entomol. 2021 Jan 7;66:257-276 [PMID: 32867528]
  26. Environ Entomol. 2020 Feb 17;49(1):1-9 [PMID: 31748809]
  27. J Insect Sci. 2013;13:6 [PMID: 23879296]
  28. Dev Comp Immunol. 2018 Jun;83:96-103 [PMID: 29355579]
  29. Insect Sci. 2015 Mar;22(3):313-24 [PMID: 25131382]
  30. J Invertebr Pathol. 2008 Nov;99(3):294-301 [PMID: 18809408]
  31. Sci Rep. 2020 Jun 9;10(1):9266 [PMID: 32518323]
  32. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  33. J Invertebr Pathol. 2020 Sep;175:107443 [PMID: 32687835]
  34. J Insect Sci. 2019 Nov 1;19(6): [PMID: 31765476]
  35. Oecologia. 2016 May;181(1):77-85 [PMID: 26846428]
  36. Proc Biol Sci. 2014 Sep 7;281(1790): [PMID: 25030981]
  37. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  38. Appl Microbiol Biotechnol. 2014 Jul;98(13):5807-22 [PMID: 24811407]

MeSH Term

Animals
Anti-Infective Agents
Coleoptera
Escherichia coli
Humans
Immune System
Insecta
Male
Seasons

Chemicals

Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0overwinteringladybirdsladybirdinfectedimmunesystemWinterinsectsstudiesinvestigatedHoweverperformanceeffectsparasiticsurvivalsignificantlyuninfectedhigherinfectionantimicrobialactivityhaemolymphparameterswintermortalityrepresentschallengingperiodinhabitingtemperateregionsplethoraenvironmentalconditionstemperatureaffectinsectsuccessfocusedbioticfactorsmechanismsaffectingfungusfunctioninginvasivelowerBodymasslosstendsindividualscomparedoneslargeradditionreducedpost-winterlongevitywithoutfoodmalefemaleTotalhaemocyteproteinconcentrationwelldecreasedpoorlyaffectedexceptiontendedInterestinglynonepre-wintergoodpredictorsOverallresultsindicateenergyexhaustionunrelatedchallengeprobableexplanationincreasedFungalectoparasitesincreasehostsdespitelimitedbodyconditionecophysiologymicrosporidialoadpathogensexuallytransmitteddiseasesstressresistance

Similar Articles

Cited By