Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F subcomplex.

Nelli Mnatsakanyan, Han-A Park, Jing Wu, Xiang He, Marc C Llaguno, Maria Latta, Paige Miranda, Besnik Murtishi, Morven Graham, Joachim Weber, Richard J Levy, Evgeny V Pavlov, Elizabeth A Jonas
Author Information
  1. Nelli Mnatsakanyan: Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA. nmnatsakanyan@pennstatehealth.psu.edu. ORCID
  2. Han-A Park: Department of Human Nutrition & Hospitality Management, University of Alabama, Tuscaloosa, AL, USA.
  3. Jing Wu: Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
  4. Xiang He: Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
  5. Marc C Llaguno: Center for Cellular and Molecular Imaging, Yale University, New Haven, CT, USA.
  6. Maria Latta: Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
  7. Paige Miranda: Center for Neural Science, New York University, New York, NY, USA.
  8. Besnik Murtishi: Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
  9. Morven Graham: Center for Cellular and Molecular Imaging, Yale University, New Haven, CT, USA. ORCID
  10. Joachim Weber: Texas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX, USA.
  11. Richard J Levy: Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
  12. Evgeny V Pavlov: Department of Basic Sciences, New York University, New York, NY, USA.
  13. Elizabeth A Jonas: Section of Endocrinology, Department of Internal Medicine, Yale University, PO Box 208020, New Haven, CT, USA. elizabeth.jonas@yale.edu. ORCID

Abstract

Mitochondrial ATP synthase is vital not only for cellular energy production but also for energy dissipation and cell death. ATP synthase c-ring was suggested to house the leak channel of mitochondrial permeability transition (mPT), which activates during excitotoxic ischemic insult. In this present study, we purified human c-ring from both eukaryotic and prokaryotic hosts to biophysically characterize its channel activity. We show that purified c-ring forms a large multi-conductance, voltage-gated ion channel that is inhibited by the addition of ATP synthase F subcomplex. In contrast, dissociation of F from F occurs during excitotoxic neuronal death suggesting that the F constitutes the gate of the channel. mPT is known to dissipate the osmotic gradient across the inner membrane during cell death. We show that ATP synthase c-subunit knock down (KD) prevents the osmotic change in response to high calcium and eliminates large conductance, Ca and CsA sensitive channel activity of mPT. These findings elucidate the gating mechanism of the ATP synthase c-subunit leak channel (ACLC) and suggest how ACLC opening is regulated by cell stress in a CypD-dependent manner.

References

  1. Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Elife. 2015;4:e10180. [PMID: 26439008]
  2. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle. 2013;12:674–83. [PMID: 23343770]
  3. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA. 2014;111:10580–5. [PMID: 24979777]
  4. Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ, et al. A mitochondrial megachannel resides in monomeric F1FO ATP synthase. Nat Commun. 2019;10:5823. [PMID: 31862883]
  5. Guo L, Carraro M, Carrer A, Minervini G, Urbani A, Masgras I, et al. Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel. J Biol Chem. 2019;294:10987–97. [PMID: 31160339]
  6. Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, et al. Ca(2+) binding to F-ATP synthase beta subunit triggers the mitochondrial permeability transition. EMBO Rep. 2017;18:1065–76. [PMID: 28507163]
  7. Carraro M, Bernardi P. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium. 2016;60:102–7. [PMID: 26995056]
  8. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 2018;70:56–63. [PMID: 28522037]
  9. Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M, Lippe G, et al. Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem. 2014;289:15980–5. [PMID: 24790105]
  10. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA. 2013;110:5887–92. [PMID: 23530243]
  11. Pinke G, Zhou L, Sazanov LA. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat Struct Mol Biol. 2020;27:1077–85.
  12. Kinnally KW, Campo ML, Tedeschi H. Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr. 1989;21:497–506. [PMID: 2478535]
  13. Havlickova V, Kaplanova V, Nuskova H, Drahota Z, Houstek J. Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c. Biochim Biophys Acta. 2010;1797:1124–9. [PMID: 20026007]
  14. Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, et al. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 2019;364:1068–75. [PMID: 31197009]
  15. Meier T, Matthey U, von Ballmoos C, Vonck J, Krug von Nidda T, Kuhlbrandt W, et al. Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J Mol Biol. 2003;325:389–97. [PMID: 12488103]
  16. Stock D, Leslie AG, Walker JE. Molecular architecture of the rotary motor in ATP synthase. Science. 1999;286:1700–5. [PMID: 10576729]
  17. Schulz S, Wilkes M, Mills DJ, Kuhlbrandt W, Meier T. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep. 2017;18:526–35. [PMID: 28283532]
  18. Jiang W, Hermolin J, Fillingame RH. The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc Natl Acad Sci USA. 2001;98:4966–71. [PMID: 11320246]
  19. Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, et al. A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J. 2005;88:2614–25. [PMID: 15695627]
  20. Petronilli V, Szabo I, Zoratti M. The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett. 1989;259:137–43. [PMID: 2480918]
  21. Karch J, Bround MJ, Khalil H, Sargent MA, Latchman N, Terada N, et al. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci Adv. 2019;5:eaaw4597. [PMID: 31489369]
  22. Kinnally KW, Antonenko YN, Zorov DB. Modulation of inner mitochondrial membrane channel activity. J Bioenerg Biomembr. 1992;24:99–110. [PMID: 1380510]
  23. Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, et al. Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem. 2009;284:33982–8. [PMID: 19801635]
  24. Soga N, Kimura K, Kinosita K Jr., Yoshida M, Suzuki T. Perfect chemomechanical coupling of FoF1-ATP synthase. Proc Natl Acad Sci USA. 2017;114:4960–5. [PMID: 28442567]
  25. Bonora M, Morganti C, Morciano G, Pedriali G, Lebiedzinska-Arciszewska M, Aquila G, et al. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep. 2017;18:1077–89. [PMID: 28566520]
  26. Licznerski P, Park HA, Rolyan H, Chen R, Mnatsakanyan N, Miranda P, et al. ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome. Cell. 2020;182:1170–85.e9.
  27. Park HA, Mnatsakanyan N, Broman K, Davis AU, May J, Licznerski P, et al. Alpha-Tocotrienol prevents oxidative stress-mediated post-translational cleavage of Bcl-xL in primary hippocampal neurons. Int J Mol Sci. 2019;21:220.
  28. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharm Sin. 2009;30:379–87. [DOI: 10.1038/aps.2009.24]
  29. Prentice H, Modi JP, Wu JY. Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxid Med Cell Longev. 2015;2015:964518. [PMID: 26576229]
  30. Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011;30:4860–73. [PMID: 22085932]
  31. Mannella CA, Lederer WJ, Jafri MS. The connection between inner membrane topology and mitochondrial function. J Mol Cell Cardiol. 2013;62:51–57. [PMID: 23672826]
  32. Daum B, Walter A, Horst A, Osiewacz HD, Kuhlbrandt W. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA. 2013;110:15301–6. [PMID: 24006361]
  33. Hackenbrock CR, Caplan AI. Ion-induced ultrastructural transformations in isolated mitochondria. The energized uptake of calcium. J Cell Biol. 1969;42:221–34. [PMID: 5795884]
  34. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys. 1979;195:453–9. [PMID: 383019]
  35. He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci USA. 2017;114:3409–14. [PMID: 28289229]
  36. Neginskaya MA, Solesio ME, Berezhnaya EV, Amodeo GF, Mnatsakanyan N, Jonas EA, et al. ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore. Cell Rep. 2019;26:11–17 e12. [PMID: 30605668]
  37. Guerrieri F, Capozza G, Kalous M, Zanotti F, Drahota Z, Papa S. Age-dependent changes in the mitochondrial F0F1 ATP synthase. Arch Gerontol Geriatr. 1992;14:299–308. [PMID: 15374393]
  38. Beck SJ, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease. Nat Commun. 2016;7:11483. [PMID: 27151236]
  39. Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta. 2003;1606:23–41. [PMID: 14507425]
  40. Kaasik A, Safiulina D, Zharkovsky A, Veksler V. Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol. 2007;292:C157–163. [PMID: 16870828]
  41. Carroll J, He J, Ding S, Fearnley IM, Walker JE. Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. Proc Natl Acad Sci USA. 2019;116:12816–21. [PMID: 31213546]
  42. Oberfeld B, Brunner J, Dimroth P. Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli. Biochemistry. 2006;45:1841–51. [PMID: 16460030]
  43. Meier T, Matthey U, Henzen F, Dimroth P, Muller DJ. The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett. 2001;505:353–6. [PMID: 11576527]
  44. Matthies D, Preiss L, Klyszejko AL, Muller DJ, Cook GM, Vonck J, et al. The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J Mol Biol. 2009;388:611–8. [PMID: 19327366]
  45. Vlasov AV, Kovalev KV, Marx SH, Round ES, Gushchin IY, Polovinkin VA, et al. Unusual features of the c-ring of F1FO ATP synthases. Sci Rep. 2019;9:18547. [PMID: 31811229]
  46. Tobias S, Montgomery M, Walker J. Structure of the dimeric ATP synthase from bovine mitochondria. PNAS. 2020;117:23519–26.
  47. Gerle C. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase. Biochim Biophys Acta. 2016;1857:1191–6. [PMID: 26968896]
  48. Alavian KN, Dworetzky SI, Bonanni L, Zhang P, Sacchetti S, Li H, et al. The mitochondrial complex V-associated large-conductance inner membrane current is regulated by cyclosporine and dexpramipexole. Mol Pharm. 2015;87:1–8. [DOI: 10.1124/mol.114.095661]
  49. Starke I, Glick GD, Borsch M. Visualizing Mitochondrial FoF1-ATP Synthase as the Target of the Immunomodulatory Drug Bz-423. Front Physiol. 2018;9:803. [PMID: 30022951]
  50. Hubbard MJ, McHugh NJ, Mitochondrial ATP. synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett. 1996;391:323–9. [PMID: 8764999]
  51. Antoniel M, Giorgio V, Fogolari F, Glick GD, Bernardi P, Lippe G. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci. 2014;15:7513–36. [PMID: 24786291]
  52. Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol. 2019;176:4247–57.
  53. Steed PR, Fillingame RH. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J Biol Chem. 2014;289:2127–38. [PMID: 24297166]
  54. Dmitriev OY, Fillingame RH. The rigid connecting loop stabilizes hairpin folding of the two helices of the ATP synthase subunit c. Protein Sci. 2007;16:2118–22. [PMID: 17766379]
  55. Carraro M, Checchetto V, Sartori G, Kucharczyk R, di Rago JP, Minervini G, et al. High-conductance channel formation in yeast mitochondria is mediated by F-ATP synthase e and g subunits. Cell Physiol Biochem. 2018;50:1840–55. [PMID: 30423558]
  56. Chen R, Park HA, Mnatsakanyan N, Niu Y, Licznerski P, Wu J. et al. Parkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis. 2019;10:469 [PMID: 31197129]
  57. Griffiths KK, Wang A, Wang L, Tracey M, Kleiner G, Quinzii CM, et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34:7404–26.
  58. Couoh-Cardel S, Hsueh YC, Wilkens S, Movileanu L. Yeast V-ATPase proteolipid ring acts as a large-conductance transmembrane protein pore. Sci Rep. 2016;6:24774. [PMID: 27098228]
  59. Fan C, Choi W, Sun W, Du J, Lu W. Structure of the human lipid-gated cation channel TRPC3. Elife; 2018;7:e36852.
  60. Elustondo PA, Nichols M, Negoda A, Thirumaran A, Zakharian E, Robertson GS, et al. Mitochondrial permeability transition pore induction is linked to formation of the complex of ATPase C-subunit, polyhydroxybutyrate and inorganic polyphosphate. Cell Death Disco. 2016;2:16070. [DOI: 10.1038/cddiscovery.2016.70]
  61. Walker JE, Fearnley IM, Gay NJ, Gibson BW, Northrop FD, Powell SJ, et al. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol. 1985;184:677–701. [PMID: 2864455]
  62. Mnatsakanyan N, Li Y, Weber J. Identification of two segments of the gamma subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide-binding sites. J Biol Chem. 2019;294:1152–60. [PMID: 30510135]
  63. Fink BD, Hong YS, Mathahs MM, Scholz TD, Dillon JS, Sivitz WI. UCP2-dependent proton leak in isolated mammalian mitochondria. J Biol Chem. 2002;277:3918–25. [PMID: 11723122]
  64. Park HA, Khanna S, Rink C, Gnyawali S, Roy S, Sen CK. Glutathione disulfide induces neural cell death via a 12-lipoxygenase pathway. Cell Death Differ. 2009;16:1167–79. [PMID: 19373248]
  65. Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharm Exp Ther. 2005;312:509–16. [DOI: 10.1124/jpet.104.075945]
  66. Wittig I, Karas M, Schagger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteom. 2007;6:1215–25. [DOI: 10.1074/mcp.M700076-MCP200]

Grants

  1. K01 AG054734/NIA NIH HHS
  2. RF1 AG072484/NIA NIH HHS
  3. R01 GM115570/NIGMS NIH HHS
  4. P30 DK045735/NIDDK NIH HHS
  5. R01 NS045876/NINDS NIH HHS
  6. R37 NS045876/NINDS NIH HHS

MeSH Term

Adenosine Triphosphate
Cell Death
Humans
Mitochondrial Membrane Transport Proteins
Mitochondrial Permeability Transition Pore
Mitochondrial Proton-Translocating ATPases
Proton-Translocating ATPases

Chemicals

Mitochondrial Membrane Transport Proteins
Mitochondrial Permeability Transition Pore
Adenosine Triphosphate
Mitochondrial Proton-Translocating ATPases
Proton-Translocating ATPases

Word Cloud

Created with Highcharts 10.0.0channelATPsynthaseFcelldeathc-ringleakmPTc-subunitMitochondrialenergyexcitotoxicpurifiedactivityshowlargesubcomplexosmoticACLCvitalcellularproductionalsodissipationsuggestedhousemitochondrialpermeabilitytransitionactivatesischemicinsultpresentstudyhumaneukaryoticprokaryotichostsbiophysicallycharacterizeformsmulti-conductancevoltage-gatedioninhibitedadditioncontrastdissociationoccursneuronalsuggestingconstitutesgateknowndissipategradientacrossinnermembraneknockKDpreventschangeresponsehighcalciumeliminatesconductanceCaCsAsensitivefindingselucidategatingmechanismsuggestopeningregulatedstressCypD-dependentmannertriggersuponloss

Similar Articles

Cited By