Gender Differences in Psychological Safety, Academic Safety, Cognitive Load, and Debriefing Satisfaction in Simulation-Based Learning.

Young Sook Roh, Kie In Jang, S Barry Issenberg
Author Information
  1. Young Sook Roh: Professor (Roh), Red Cross College of Nursing, Chung-Ang University, Seoul, Republic of Korea; Professor (Jang), College of Nursing, The Kyungbok University, Namyangju-si, Gyeonggi-do, Republic of Korea; and Professor (Issenberg), University of Miami Miller School of Medicine, Miami, Florida.

Abstract

BACKGROUND: As there is an increasing trend in the number of male-identifying learners in undergraduate nursing education, a need exists to identify the gender differences in learners' perceptions regarding simulation-based learning.
PURPOSE: This study aimed to identify the gender differences in psychological safety, academic safety, cognitive load, and debriefing satisfaction in simulation-based nursing education.
METHODS: A cross-sectional descriptive survey was implemented with 97 female and 95 male nursing students. Data were analyzed using Mann-Whitney U tests or independent-samples t tests.
RESULTS: Female nursing students reported a lower academic safety and higher intrinsic load than male nursing students. Male nursing students perceived a higher germane load than female nursing students.
CONCLUSIONS: The significance of the present study was the identification of gender differences in participant perception of the simulation learning experience for effective simulation design.

References

  1. Jeffries PR, Rodgers B, Adamson K. NLN Jeffries Simulation Theory: brief narrative description. Nurs Educ Perspect. 2015;36(5):292–293. doi:10.5480/1536-5026-36.5.292
  2. Cabrera-Mino C, Shinnick MA, Moye S. Task-evoked pupillary responses in nursing simulation as an indicator of stress and cognitive load. Clin Simul Nurs. 2019;31(C):21–27. doi:10.1016/j.ecns.2019.03.009
  3. Díez N, Rodríguez-Díez MC, Nagore D, et al. A randomized trial of cardiopulmonary resuscitation training for medical students: voice advisory mannequin compared to guidance provided by an instructor. Simul Healthc. 2013;8(4):234–241. doi:10.1097/SIH.0b013e31828e7196
  4. Grady JL, Kehrer RG, Trusty CE, et al. Learning nursing procedures: the influence of simulator fidelity and student gender on teaching effectiveness. J Nurs Educ. 2008;47(9):403–408. doi:10.3928/01484834-20080901-09
  5. Beischel KP. Variables affecting learning in a simulation experience: a mixed methods study. West J Nurs Res. 2013;35(2):226–247. doi:10.1177/0193945911408444
  6. Durham CF, Cato ML, Lasater K. NLN/Jeffries simulation framework state of the science project: participant construct. Clin Simul Nurs. 2014;10(7):363–372. doi:10.1016/j.ecns.2014.04.002
  7. Choudhary R, Dullo P, Tandon RV. Gender differences in learning style preferences of first year medical students. Pak J Physiol. 2011;7(2):42–45.
  8. Garber LL, Hyatt EM, Boya ÜÖ. Gender differences in learning preferences among participants of serious business games. Int J Manag Educ. 2017;15(2):11–29. doi:10.1016/j.ijme.2017.02.001
  9. Chiu HY, Kang YN, Wang WL, et al. Gender differences in the acquisition of suturing skills with the da Vinci surgical system. J Formos Med Assoc. 2020;119(1, pt 3):462–470. doi:10.1016/j.jfma.2019.06.013
  10. Tamás É, Edelbring S, Hjelm C, Hult H, Gimm O. Gender and assigned role influences medical students' learning experience in interprofessional team training simulations. MedEdPublish. 2017;6(1):1–17. doi:10.15694/mep.2017.000028
  11. Vogel D, Meyer M, Harendza S. Verbal and non-verbal communication skills including empathy during history taking of undergraduate medical students. BMC Med Educ. 2018;18(1):157. doi:10.1186/s12909-018-1260-9
  12. Ali A, Subhi Y, Ringsted C, Konge L. Gender differences in the acquisition of surgical skills: a systematic review. Surg Endosc. 2015;29(11):3065–3073. doi:10.1007/s00464-015-4092-2
  13. Gotlieb R, Abitbol J, How JA, et al. Gender differences in how physicians access and process information. Gynecol Oncol Rep. 2019;27:50–53. doi:10.1016/j.gore.2018.12.008
  14. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi:10.3758/BF03193146
  15. Edmondson A. Psychological safety and learning behavior in work teams. Adm Sci Q. 1999;44(2):350–383. doi:10.2307/2666999
  16. Kim WK, Kwon IS, Choi YK. Task conflict and learning behavior in work groups: the effects of group cohesiveness and psychological safety. J Int Trade Commerce. 2016;12(6):467–487.
  17. Ganley BJ, Linnard-Palmer L. Academic safety during nursing simulation: perceptions of nursing students and faculty. Clin Simul Nurs. 2012;8(2):e49–e57. doi:10.1016/j.ecns.2010.06.004
  18. Roh YS, Ahn JW, Kim E, Kim J. Effects of prebriefing on psychological safety and learning outcomes. Clin Simul Nurs. 2018;25(C):12–19. doi:10.1016/j.ecns.2018.10.001
  19. Josephsen J. Cognitive load measurement, worked-out modeling, and simulation. Clin Simul Nurs. 2018;23:10–15. doi:10.1016/j.ecns.2018.07.004
  20. Na YH, Roh YS. Effects of peer-led debriefing on cognitive load, achievement emotions, and nursing performance. Clin Simul Nurs. 2021;55:1–9. doi:10.1016/j.ecns.2021.03.008
  21. Young JQ, Van Merrienboer J, Durning S, Ten Cate O. Cognitive load theory: implications for medical education: AMEE Guide No. 86. Med Teach. 2014;36(5):371–384. doi:10.3109/0142159X.2014.889290
  22. De Jong T. Cognitive load theory, educational research, and instructional design: some food for thought. Instr Sci. 2010;38:105–134. doi:10.1007/s11251-009-9110-0
  23. Roh YS, Jang KI. Survey of factors influencing learner engagement with simulation debriefing among nursing students. Nurs Health Sci. 2017;19(4):485–491. doi:10.1111/nhs.12371
  24. Simon R, Raemer DB, Rudolph JW. Debriefing Assessment for Simulation in Healthcare (DASH) Student Version©. Center for Medical Simulation. Accessed September 1, 2015. https://harvardmedsim.org/wp-content/uploads/2017/01/DASH.SV.Short.2010.Final.pdf
  25. Phrampus PE, O'Donnell JM. Debriefing using a structured and supported approach. In: Levine AI, DeMaria S, Schwartz AD, Sim AJ, eds. The Comprehensive Textbook of Healthcare Simulation. Springer; 2013:73–84. doi:10.1007/978-1-4614-5993-4_6
  26. Park JE, Kim JH. Nursing students' psychological safety in high fidelity simulations: development of a new scale for psychometric evaluation. Nurse Educ Today. 2021;105:105017. doi:10.1016/j.nedt.2021.105017
  27. Wang XT, Kruger DJ, Wilke A. Life history variables and risk-taking propensity. Evol Hum Behav. 2009;30(2):77–84. doi:10.1016/j.evolhumbehav.2008.09.006
  28. Wanless SB. The role of psychological safety in human development. Res Hum Dev. 2016;13(1):6–14. doi:10.1080/15427609.2016.1141283
  29. Tsuei SH, Lee D, Ho C, Regehr G, Nimmon L. Exploring the construct of psychological safety in medical education. Acad Med. 2019;94:S28–S35. doi:10.1097/ACM.0000000000002897
  30. Stephen LA, Kostovich C, O'Rourke J. Psychological safety in simulation: prelicensure nursing students' perceptions. Clin Simul Nurs. 2020;47(C):25–31. doi:10.1016/j.ecns.2020.06.010
  31. Daniels AL, Morse C, Breman R. Psychological safety in simulation-based prelicensure nursing education: a narrative review. Nurse Educ. 2021;46(5):E99–E102. doi:10.1097/NNE.0000000000001057
  32. Turner S, Harder N. Psychological safe environment: a concept analysis. Clin Simul Nurs. 2018;18:47–55. doi:10.1016/j.ecns.2018.02.004
  33. Chang HY, Wu HF, Chang YC, Tseng YS, Wang YC. The effects of a virtual simulation-based, mobile technology application on nursing students' learning achievement and cognitive load: randomized controlled trial. Int J Nurs Stud. 2021;120:103948. doi:10.1016/j.ijnurstu.2021.103948
  34. Paas F, van Merriënboer JJG. Cognitive-load theory: methods to manage working memory load in the learning of complex tasks. Curr Dir Psychol Sci. 2020;29(4):394–398. doi:10.1177/0963721420922183
  35. Choi EJ. Relationships between metacognition, problem solving process, and debriefing experience in simulation as problem-based learning (S-PBL). J Korean Contents Assoc. 2015;16(1):459–469. doi:10.5392/JKCA.2016.16.01.459
  36. Kim YJ, Yoo JH. The utilization of debriefing for simulation in healthcare: a literature review. Nurse Educ Pract. 2020;43:102698. doi:10.1016/j.nepr.2020.102698
  37. Standards Committee INACSL, Decker S, Alinier G, et al. Healthcare simulation standards of best practice™ the debriefing process. Clin Simul Nurs. 2021;58:27–32. doi:10.1016/j.ecns.2021.08.011
  38. MacLean S, Geddes F, Kelly M, Della P. Realism and presence in simulation: nursing student perceptions and learning outcomes. J Nurs Educ. 2019;58(6):330–338. doi:10.3928/01484834-20190521-03

MeSH Term

Clinical Competence
Cognition
Cross-Sectional Studies
Education, Nursing, Baccalaureate
Female
Humans
Male
Nursing Education Research
Personal Satisfaction
Sex Factors
Students, Nursing

Word Cloud

Created with Highcharts 10.0.0nursingstudentsgenderdifferencessafetyloadeducationidentifysimulation-basedlearningstudyacademicfemalemaletestshighersimulationSafetyBACKGROUND:increasingtrendnumbermale-identifyinglearnersundergraduateneedexistslearners'perceptionsregardingPURPOSE:aimedpsychologicalcognitivedebriefingsatisfactionMETHODS:cross-sectionaldescriptivesurveyimplemented9795DataanalyzedusingMann-WhitneyUindependent-samplestRESULTS:FemalereportedlowerintrinsicMaleperceivedgermaneCONCLUSIONS:significancepresentidentificationparticipantperceptionexperienceeffectivedesignGenderDifferencesPsychologicalAcademicCognitiveLoadDebriefingSatisfactionSimulation-BasedLearning

Similar Articles

Cited By

No available data.