The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts.

Matthew B Greenblatt, Jae-Hyuck Shim, Seoyeon Bok, Jung-Min Kim
Author Information
  1. Matthew B Greenblatt: Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY, USA.
  2. Jae-Hyuck Shim: Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
  3. Seoyeon Bok: Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY, USA.
  4. Jung-Min Kim: Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.

Abstract

Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.

Keywords

References

  1. Horm Res. 2009 Apr;71 Suppl 2:64-70 [PMID: 19407499]
  2. J Biol Chem. 2010 Feb 5;285(6):3568-3574 [PMID: 20007706]
  3. J Biol Chem. 2017 Feb 24;292(8):3164-3171 [PMID: 28073913]
  4. Nat Commun. 2020 Nov 11;11(1):5704 [PMID: 33177525]
  5. Nature. 2021 Feb;590(7844):129-133 [PMID: 33408418]
  6. Mol Cell Biol. 2008 Jan;28(1):344-57 [PMID: 17967876]
  7. Hum Mol Genet. 2007 Apr 15;16(8):874-86 [PMID: 17317783]
  8. J Cell Physiol. 2004 Apr;199(1):140-8 [PMID: 14978743]
  9. Cell. 1997 May 30;89(5):765-71 [PMID: 9182764]
  10. Cell Rep. 2015 Aug 11;12(6):913-21 [PMID: 26235619]
  11. Bone Res. 2021 Jan 27;9(1):6 [PMID: 33500396]
  12. J Biol Chem. 2002 Nov 15;277(46):44005-12 [PMID: 12215457]
  13. J Cell Biochem. 2012 Feb;113(2):457-64 [PMID: 21928350]
  14. Hum Mol Genet. 2013 Aug 1;22(15):3048-62 [PMID: 23571107]
  15. J Clin Invest. 2011 Nov;121(11):4383-92 [PMID: 21965325]
  16. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1226-35 [PMID: 26884171]
  17. Am J Med Genet A. 2009 Oct;149A(10):2327-38 [PMID: 19764036]
  18. Bone Res. 2016 Apr 26;4:16009 [PMID: 27563484]
  19. Am J Med Genet A. 2011 May;155A(5):1050-9 [PMID: 21465658]
  20. Sci Rep. 2017 Oct 16;7(1):13241 [PMID: 29038439]
  21. Cell Stem Cell. 2014 Aug 7;15(2):154-68 [PMID: 24953181]
  22. Bone Res. 2018 Apr 6;6:12 [PMID: 29644115]
  23. Cell Signal. 2008 Apr;20(4):675-83 [PMID: 18222647]
  24. PLoS Genet. 2014 Dec 04;10(12):e1004820 [PMID: 25474590]
  25. Ther Adv Med Oncol. 2015 Mar;7(2):122-36 [PMID: 25755684]
  26. N Engl J Med. 2020 Sep 24;383(13):1207-1217 [PMID: 32955176]
  27. Annu Rev Biochem. 2011;80:769-95 [PMID: 21548788]
  28. Cell. 2018 Sep 20;175(1):43-56.e21 [PMID: 30241615]
  29. N Engl J Med. 2021 Jun 24;384(25):2371-2381 [PMID: 34096690]
  30. J Biol Chem. 2001 Dec 28;276(52):49343-9 [PMID: 11675379]
  31. J Bone Miner Res. 2012 Mar;27(3):538-51 [PMID: 22072425]
  32. Cell Biochem Funct. 2012 Jun;30(4):297-302 [PMID: 22249904]
  33. J Bone Miner Res. 2002 Jan;17(1):101-10 [PMID: 11771655]
  34. J Cell Biol. 2011 Mar 21;192(6):1057-72 [PMID: 21402791]
  35. Nature. 2013 Jul 25;499(7459):491-5 [PMID: 23863940]
  36. Am J Hum Genet. 1995 Aug;57(2):321-8 [PMID: 7668257]
  37. Trends Biochem Sci. 2003 Jun;28(6):284-93 [PMID: 12826400]
  38. Am J Med Genet. 1999 Mar 26;89(1):1-6 [PMID: 10469430]
  39. J Bone Miner Res. 2017 Sep;32(9):1811-1815 [PMID: 28561373]
  40. Nature. 2021 Mar;591(7850):438-444 [PMID: 33627868]
  41. Mol Genet Metab. 2012 Jun;106(2):237-40 [PMID: 22551697]
  42. Front Cell Dev Biol. 2019 Jan 07;6:170 [PMID: 30666305]
  43. J Biol Chem. 2000 Feb 11;275(6):4453-9 [PMID: 10660618]
  44. Dev Dyn. 2003 Jul;227(3):335-46 [PMID: 12815619]
  45. J Biol Chem. 2014 Mar 28;289(13):8828-38 [PMID: 24509851]
  46. Nat Med. 2000 Sep;6(9):980-4 [PMID: 10973316]
  47. Bone Res. 2013 Sep 25;1(3):249-59 [PMID: 26273506]
  48. N Engl J Med. 2011 Jun 30;364(26):2507-16 [PMID: 21639808]
  49. J Biol Chem. 2002 Sep 27;277(39):36181-7 [PMID: 12110689]
  50. Hum Mol Genet. 2018 Nov 15;27(22):3827-3839 [PMID: 30007339]
  51. PLoS Genet. 2011 Apr;7(4):e1002050 [PMID: 21533187]
  52. Mol Cell Biol. 2000 Apr;20(7):2334-42 [PMID: 10713157]
  53. J Biol Chem. 2000 Oct 6;275(40):31155-61 [PMID: 10859303]
  54. J Biol Chem. 2006 Jun 16;281(24):16502-11 [PMID: 16613856]
  55. Cell Signal. 2012 Nov;24(11):2187-96 [PMID: 22800864]
  56. N Engl J Med. 2015 Jan 1;372(1):30-9 [PMID: 25399551]
  57. J Biol Chem. 1996 Dec 27;271(52):33169-72 [PMID: 8969170]
  58. Cell Metab. 2006 Dec;4(6):441-51 [PMID: 17141628]
  59. Am J Med Genet. 1999 Jun 11;84(5):413-9 [PMID: 10360395]
  60. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2160-5 [PMID: 16461457]
  61. Endocrinology. 2007 Nov;148(11):5323-30 [PMID: 17717053]
  62. Nature. 2018 Oct;562(7725):133-139 [PMID: 30250253]
  63. J Clin Invest. 2010 Jul;120(7):2457-73 [PMID: 20551513]
  64. Annu Rev Cell Dev Biol. 2013;29:63-79 [PMID: 23725048]
  65. Cell. 2015 Jan 15;160(1-2):285-98 [PMID: 25594184]
  66. Mol Cell Biol. 2009 Nov;29(21):5843-57 [PMID: 19737917]
  67. Front Cell Dev Biol. 2016 Jun 27;4:67 [PMID: 27446918]
  68. J Biol Chem. 2009 Nov 20;284(47):32533-43 [PMID: 19801668]
  69. J Cell Physiol. 2013 Dec;228(12):2377-85 [PMID: 23702614]
  70. Connect Tissue Res. 2019 Mar;60(2):107-116 [PMID: 29609502]
  71. Bone Res. 2014 Apr 29;2:14003 [PMID: 26273516]
  72. Nat Commun. 2020 Jan 16;11(1):332 [PMID: 31949165]
  73. EMBO J. 2004 Jul 21;23(14):2789-99 [PMID: 15229648]
  74. Science. 1997 Jun 13;276(5319):1702-5 [PMID: 9180081]
  75. J Bone Miner Res. 2014;29(5):1283-94 [PMID: 24190076]
  76. Biochem Biophys Res Commun. 2015 Jul 31;463(3):241-7 [PMID: 25998381]
  77. Curr Mol Biol Rep. 2017 Jun;3(2):122-132 [PMID: 29057206]
  78. Hum Mol Genet. 2011 Oct 15;20(20):3910-24 [PMID: 21757497]
  79. Cancer Discov. 2019 Mar;9(3):329-341 [PMID: 30770389]
  80. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12097-102 [PMID: 25092332]
  81. Development. 2018 Jul 26;145(14): [PMID: 29986870]
  82. Genes Dev. 2018 Mar 1;32(5-6):359-372 [PMID: 29563184]
  83. Cell. 1997 May 30;89(5):773-9 [PMID: 9182765]
  84. J Clin Invest. 2013 Sep;123(9):4010-22 [PMID: 23945236]
  85. J Biol Chem. 1996 Mar 8;271(10):5361-8 [PMID: 8621389]
  86. Bone. 2008 Apr;42(4):631-43 [PMID: 18242159]
  87. Nature. 1992 Dec 24-31;360(6406):741-5 [PMID: 1465144]
  88. Nature. 2018 Nov;563(7730):254-258 [PMID: 30401834]
  89. J Cell Sci. 2002 Nov 15;115(Pt 22):4317-25 [PMID: 12376563]
  90. PLoS One. 2011;6(10):e26999 [PMID: 22046431]
  91. Mol Cell Biol. 2005 Jan;25(1):336-45 [PMID: 15601854]
  92. J Am Acad Orthop Surg. 1999 Jul-Aug;7(4):217-30 [PMID: 10434076]
  93. Nat Genet. 2007 Sep;39(9):1145-50 [PMID: 17694057]
  94. Nat Genet. 2007 Jan;39(1):70-4 [PMID: 17143285]
  95. Exp Mol Med. 2020 Aug;52(8):1178-1184 [PMID: 32788656]
  96. Biochem Biophys Res Commun. 2020 Oct 22;531(4):497-502 [PMID: 32807497]
  97. Elife. 2021 Jul 19;10: [PMID: 34280086]
  98. Sci Signal. 2016 Jan 26;9(412):ra9 [PMID: 26814233]
  99. Int J Mol Sci. 2019 Apr 12;20(8): [PMID: 31013682]
  100. Cell Death Dis. 2014 Apr 17;5:e1187 [PMID: 24743742]
  101. J Biol Chem. 2002 May 3;277(18):15514-22 [PMID: 11854297]
  102. Nature. 1996 Dec 12;384(6609):567-70 [PMID: 8955270]
  103. J Biol Chem. 1999 Jan 29;274(5):2893-8 [PMID: 9915826]
  104. Oncogene. 2011 Mar 31;30(13):1506-17 [PMID: 21119595]
  105. J Med Genet. 2007 Feb;44(2):81-8 [PMID: 17105749]
  106. Cell. 2005 Apr 8;121(1):101-13 [PMID: 15820682]
  107. PLoS Genet. 2014 May 29;10(5):e1004364 [PMID: 24875294]
  108. J Biol Chem. 2005 Sep 9;280(36):31353-9 [PMID: 16000303]
  109. Nat Med. 2014 Aug;20(8):904-10 [PMID: 24997609]
  110. Dev Biol. 2009 Aug 15;332(2):325-38 [PMID: 19501582]
  111. Cell. 1995 Jan 27;80(2):187-97 [PMID: 7834739]
  112. EMBO Rep. 2006 Aug;7(8):782-6 [PMID: 16880823]
  113. Mol Cell Biol. 2003 Apr;23(7):2298-308 [PMID: 12640115]
  114. Bone. 2002 Jan;30(1):71-7 [PMID: 11792567]
  115. J Biol Chem. 1995 May 26;270(21):12665-9 [PMID: 7759517]
  116. Endocrinology. 2000 Jul;141(7):2674-82 [PMID: 10875273]
  117. J Cell Biol. 2007 Feb 26;176(5):709-18 [PMID: 17325210]

Grants

  1. /National Research Foundation of Korea
  2. R01 AR078230/NIAMS NIH HHS
  3. R21 AR077557/NIAMS NIH HHS
  4. R01AR078230/NIH HHS
  5. R01AR075585/NIH HHS
  6. R01 AR075585/NIAMS NIH HHS
  7. 2021R1A6A3A14038667/Ministry of Education
  8. /International Fibrodysplasia Ossificans Progressiva Association
  9. R21AR077557/NIH HHS
  10. /Burroughs Wellcome Fund
  11. /AAVAA Therapeutics

Word Cloud

Created with Highcharts 10.0.0ERKpathwayMAPKExtracellularkinasesosteoblastdifferentiationboneskeletalsignal-regulatedproteinformationphysiologicalsubstratestranscriptionfactorchangesassociatedimportanceKinaseOsteoblastsERKsevolutionarilyancientsignaltransducersmitogen-activatedkinasefamilylonglinkedregulationreviewfunctionsbiochemistryupstreamactivatorsdownstreamactivatedprogenitorsregulatesmineralizationservingkeyregulatorRunt-related2criticalHowevernewevidencehighlightscontext-dependentwiringfunctionindicatingbroadersetrolescomponentsConsistentseveralhumandysplasiasdysregulationincludingneurofibromatosistype1NoonansyndromecontinuallybroadeningarraydrugstargetingtreatmentcancerdisordersmakesincreasinglyimportantunderstandinterferenceimpactsmetabolismhighlightingmousestudiesmodelroleSignal-RegulatedMitogen-ActivatedProteinPathwayBonebonesMAPMitogen-activated

Similar Articles

Cited By