Affective State Recognition in Livestock-Artificial Intelligence Approaches.

Suresh Neethirajan
Author Information
  1. Suresh Neethirajan: Farmworx, Adaptation Physiology Group, Animal Sciences Department, Wageningen University and Research, 6700 AH Wageningen, The Netherlands. ORCID

Abstract

Farm animals, numbering over 70 billion worldwide, are increasingly managed in large-scale, intensive farms. With both public awareness and scientific evidence growing that farm animals experience suffering, as well as affective states such as fear, frustration and distress, there is an urgent need to develop efficient and accurate methods for monitoring their welfare. At present, there are not scientifically validated 'benchmarks' for quantifying transient emotional (affective) states in farm animals, and no established measures of good welfare, only indicators of poor welfare, such as injury, pain and fear. Conventional approaches to monitoring livestock welfare are time-consuming, interrupt farming processes and involve subjective judgments. Biometric sensor data enabled by artificial intelligence is an emerging smart solution to unobtrusively monitoring livestock, but its potential for quantifying affective states and ground-breaking solutions in their application are yet to be realized. This review provides innovative methods for collecting big data on farm animal emotions, which can be used to train artificial intelligence models to classify, quantify and predict affective states in individual pigs and cows. Extending this to the group level, social network analysis can be applied to model emotional dynamics and contagion among animals. Finally, 'digital twins' of animals capable of simulating and predicting their affective states and behaviour in real time are a near-term possibility.

Keywords

References

  1. Front Vet Sci. 2016 Nov 14;3:100 [PMID: 27896270]
  2. Animals (Basel). 2018 Jul 17;8(7): [PMID: 30018237]
  3. Behav Processes. 2019 Jan;158:172-180 [PMID: 30543843]
  4. J Dairy Sci. 2020 Apr;103(4):3529-3544 [PMID: 32089298]
  5. Front Hum Neurosci. 2018 Jul 16;12:284 [PMID: 30061818]
  6. Behav Sci (Basel). 2017 Sep 29;7(4): [PMID: 28961185]
  7. JAMA. 2019 Oct 8;322(14):1351-1352 [PMID: 31393527]
  8. Sensors (Basel). 2018 Aug 14;18(8): [PMID: 30110960]
  9. Neurosci Biobehav Rev. 2020 Sep;116:480-493 [PMID: 32682741]
  10. Animals (Basel). 2018 May 25;8(6): [PMID: 29799456]
  11. Asian-Australas J Anim Sci. 2017 Apr;30(4):449-454 [PMID: 26954194]
  12. J Vet Med Sci. 2018 Feb 2;80(1):181-185 [PMID: 29225303]
  13. J Dairy Sci. 2019 Nov;102(11):10677-10694 [PMID: 31477285]
  14. Psychoneuroendocrinology. 2020 May;115:104636 [PMID: 32160578]
  15. J R Soc Interface. 2019 Jun 28;16(155):20190225 [PMID: 31213168]
  16. J Dairy Sci. 2019 May;102(5):4536-4540 [PMID: 30827545]
  17. Philos Trans R Soc Lond B Biol Sci. 2018 Sep 26;373(1756): [PMID: 30104425]
  18. Front Behav Neurosci. 2017 Jul 28;11:141 [PMID: 28804452]
  19. Animals (Basel). 2021 Apr 03;11(4): [PMID: 33916713]
  20. PLoS One. 2020 May 29;15(5):e0233558 [PMID: 32469977]
  21. Physiol Meas. 2019 Sep 03;40(8):084001 [PMID: 31292285]
  22. Arch Anim Breed. 2019 Apr 16;62(1):199-204 [PMID: 31807630]
  23. Animals (Basel). 2021 Feb 08;11(2): [PMID: 33567488]
  24. Physiol Behav. 2018 Oct 1;194:23-40 [PMID: 29704530]
  25. Curr Zool. 2019 Oct;65(5):541-551 [PMID: 31616485]
  26. Theriogenology. 2018 Oct 1;119:238-244 [PMID: 30056320]
  27. JMIR Med Inform. 2020 Apr 30;8(4):e15516 [PMID: 32352387]
  28. Neurosci Biobehav Rev. 2005 May;29(3):469-91 [PMID: 15820551]
  29. PLoS One. 2021 Jan 20;16(1):e0245742 [PMID: 33471865]
  30. Sensors (Basel). 2018 Sep 01;18(9): [PMID: 30200501]
  31. Behav Brain Res. 2014 Jul 1;267:144-55 [PMID: 24681090]
  32. Animals (Basel). 2018 Aug 21;8(9): [PMID: 30134557]
  33. PLoS One. 2018 Oct 4;13(10):e0205122 [PMID: 30286157]
  34. Front Vet Sci. 2018 Sep 12;5:218 [PMID: 30258847]
  35. PLoS One. 2019 Nov 6;14(11):e0224747 [PMID: 31693688]
  36. Front Vet Sci. 2018 Jun 28;5:131 [PMID: 30003083]
  37. Front Vet Sci. 2017 Apr 18;4:51 [PMID: 28459052]
  38. Nanomicro Lett. 2018;10(3):41 [PMID: 30393690]
  39. Sensors (Basel). 2020 Jul 09;20(14): [PMID: 32660133]
  40. Neurosci Biobehav Rev. 2020 May;112:144-163 [PMID: 31991192]
  41. Animals (Basel). 2020 May 17;10(5): [PMID: 32429525]
  42. Sensors (Basel). 2021 Jan 14;21(2): [PMID: 33466737]
  43. Animals (Basel). 2020 Nov 14;10(11): [PMID: 33202526]
  44. Anim Cogn. 2020 Jan;23(1):121-130 [PMID: 31720926]
  45. Nat Commun. 2019 Mar 11;10(1):1096 [PMID: 30858366]
  46. Neurosci Biobehav Rev. 2020 Nov;118:3-17 [PMID: 32682742]
  47. ALTEX. 2017;34(3):409-429 [PMID: 28214916]
  48. Nat Neurosci. 2021 Apr;24(4):470-477 [PMID: 33603229]
  49. Sensors (Basel). 2020 Apr 17;20(8): [PMID: 32316511]
  50. Psychol Sci Public Interest. 2019 Jul;20(1):1-68 [PMID: 31313636]
  51. Annu Rev Anim Biosci. 2019 Feb 15;7:403-425 [PMID: 30485756]
  52. Front Behav Neurosci. 2016 Jun 09;10:119 [PMID: 27375454]
  53. Animals (Basel). 2018 Aug 07;8(8): [PMID: 30087230]
  54. Proc Biol Sci. 2018 Feb 28;285(1873): [PMID: 29491174]
  55. Ann N Y Acad Sci. 2019 Feb;1438(1):62-76 [PMID: 30345570]
  56. Animals (Basel). 2020 Jul 05;10(7): [PMID: 32635608]
  57. Sci Rep. 2018 Dec 4;8(1):17602 [PMID: 30514964]
  58. PLoS One. 2018 Oct 1;13(10):e0204619 [PMID: 30273367]
  59. Proc Biol Sci. 2010 Oct 7;277(1696):2895-904 [PMID: 20685706]
  60. R Soc Open Sci. 2020 Jan 15;7(1):190824 [PMID: 32218931]
  61. Animals (Basel). 2018 Dec 29;9(1): [PMID: 30597931]
  62. Behav Processes. 2020 Dec;181:104262 [PMID: 33049377]
  63. Sci Rep. 2019 Dec 5;9(1):18468 [PMID: 31804583]
  64. Comput Methods Programs Biomed. 2017 Mar;140:93-110 [PMID: 28254094]
  65. Neurosci Biobehav Rev. 2020 May;112:62-82 [PMID: 32001272]
  66. J Dairy Sci. 2019 Jan;102(1):690-695 [PMID: 30415860]
  67. Sci Rep. 2021 Mar 1;11(1):4882 [PMID: 33649476]
  68. Behav Processes. 2016 Nov;132:49-56 [PMID: 27693533]
  69. R Soc Open Sci. 2017 Nov 8;4(11):171228 [PMID: 29291109]
  70. Sci Rep. 2019 Feb 14;9(1):2062 [PMID: 30765788]
  71. Meat Sci. 2019 Oct;156:11-22 [PMID: 31121361]
  72. Front Neurosci. 2017 Sep 21;11:524 [PMID: 28983237]
  73. Med Hypotheses. 2020 Apr;137:109542 [PMID: 31901878]
  74. Animal. 2019 Jun;13(6):1287-1296 [PMID: 30345951]
  75. PLoS One. 2015 Aug 05;10(8):e0133408 [PMID: 26244335]
  76. Animals (Basel). 2020 Mar 02;10(3): [PMID: 32131424]
  77. Proc Biol Sci. 2004 Oct 7;271(1552):2077-84 [PMID: 15451699]
  78. Res Vet Sci. 2017 Oct;114:430-443 [PMID: 28755556]
  79. Neurosci Biobehav Rev. 2020 Jun;113:273-286 [PMID: 31982603]

Word Cloud

Created with Highcharts 10.0.0affectivestatesanimalswelfarefarmmonitoringanimalfearmethodsquantifyingemotionalmeasureslivestockdataartificialintelligenceemotionscanFarmnumbering70billionworldwideincreasinglymanagedlarge-scaleintensivefarmspublicawarenessscientificevidencegrowingexperiencesufferingwellfrustrationdistressurgentneeddevelopefficientaccuratepresentscientificallyvalidated'benchmarks'transientestablishedgoodindicatorspoorinjurypainConventionalapproachestime-consuminginterruptfarmingprocessesinvolvesubjectivejudgmentsBiometricsensorenabledemergingsmartsolutionunobtrusivelypotentialground-breakingsolutionsapplicationyetrealizedreviewprovidesinnovativecollectingbigusedtrainmodelsclassifyquantifypredictindividualpigscowsExtendinggrouplevelsocialnetworkanalysisappliedmodeldynamicscontagionamongFinally'digitaltwins'capablesimulatingpredictingbehaviourrealtimenear-termpossibilityAffectiveStateRecognitionLivestock-ArtificialIntelligenceApproachesanimal-basedemotionmodellingsensors

Similar Articles

Cited By