Adsorption of Quercetin on Brown Rice and Almond Protein Matrices: Effect of Quercetin Concentration.

Mirela Kopjar, Ivana Buljeta, Ina Ćorković, Anita Pichler, Josip Šimunović
Author Information
  1. Mirela Kopjar: Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia. ORCID
  2. Ivana Buljeta: Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia. ORCID
  3. Ina Ćorković: Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia. ORCID
  4. Anita Pichler: Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia.
  5. Josip Šimunović: Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA.

Abstract

Plant-based proteins are very often used as carriers of different phenolic compounds. For that purpose, complexation of Quercetin with Almond and Brown Rice protein matrices was investigated. The amount of protein matrices was constant, while the concentration of Quercetin varied (1 mM, 2 mM or 5 mM) during complexation. Dried complexes were investigated for Quercetin amount (HPLC analysis) and antioxidant activity (DPPH, FRAP and CUPRAC methods). Additionally, complexation was proven by DSC and FTIR-ATR screening. An increase in the concentration of Quercetin in the initial complexation mixture resulted in the increase in the adsorption of Quercetin onto protein matrices. For the Brown Rice protein matrices, this increase was proportional to the initial Quercetin concentration. Adsorption of Quercetin caused the change in thermal stability of microparticles in comparison to corresponding protein matrices that have been proven by DSC. FTIR-ATR analysis revealed structural changes on microparticles upon adsorption of Quercetin.

Keywords

References

  1. Food Sci Nutr. 2015 Sep;3(5):415-24 [PMID: 26405527]
  2. Molecules. 2021 Mar 01;26(5): [PMID: 33804548]
  3. J Agric Food Chem. 2005 Mar 23;53(6):1841-56 [PMID: 15769103]
  4. Food Funct. 2020 Jun 24;11(6):5091-5104 [PMID: 32469017]
  5. J Agric Food Chem. 2003 Aug 13;51(17):5088-95 [PMID: 12903974]
  6. Food Chem. 2020 Nov 30;331:127336 [PMID: 32569969]
  7. J Agric Food Chem. 2012 Apr 25;60(16):4136-43 [PMID: 22486637]
  8. Molecules. 2021 Jul 21;26(15): [PMID: 34361554]
  9. Int J Biol Macromol. 2002 Jun 18;30(3-4):137-50 [PMID: 12063116]
  10. Phytother Res. 2018 Nov;32(11):2109-2130 [PMID: 30039547]
  11. Crit Rev Food Sci Nutr. 2020;60(19):3290-3303 [PMID: 31680558]
  12. Food Chem. 2011 Aug 1;127(3):1046-55 [PMID: 25214095]
  13. RSC Adv. 2019 Nov 4;9(61):35825-35840 [PMID: 35528080]
  14. Food Chem. 2012 Apr 15;131(4):1193-1200 [PMID: 23950619]
  15. Food Funct. 2014 Jan;5(1):18-34 [PMID: 24326533]
  16. Int J Gen Med. 2021 Jun 24;14:2807-2816 [PMID: 34194240]
  17. Crit Rev Food Sci Nutr. 2012;52(3):213-48 [PMID: 22214442]
  18. Molecules. 2019 Jan 23;24(3): [PMID: 30678067]
  19. Food Chem. 2018 Apr 15;245:871-878 [PMID: 29287453]
  20. J Agric Food Chem. 2014 Jul 23;62(29):7010-21 [PMID: 24758688]
  21. Adv Food Nutr Res. 2018;84:103-144 [PMID: 29555067]
  22. Antioxidants (Basel). 2020 Apr 13;9(4): [PMID: 32294926]
  23. Plants (Basel). 2021 Oct 11;10(10): [PMID: 34685967]
  24. Mol Nutr Food Res. 2012 Oct;56(10):1511-9 [PMID: 22930468]
  25. Food Funct. 2017 Dec 13;8(12):4760-4767 [PMID: 29192707]
  26. J Food Sci. 2017 Feb;82(2):409-419 [PMID: 28071787]
  27. Compr Rev Food Sci Food Saf. 2018 Jan;17(1):200-219 [PMID: 33350064]
  28. J Agric Food Chem. 2004 Jul 28;52(15):4725-9 [PMID: 15264906]
  29. J Agric Food Chem. 2004 Dec 29;52(26):7970-81 [PMID: 15612784]

Grants

  1. PZS-2019-02-1595/Croatian Science Foundation

Word Cloud

Created with Highcharts 10.0.0quercetinproteinmatricescomplexationbrownriceconcentrationmMDSCFTIR-ATRincreasealmondinvestigatedamountHPLCanalysisantioxidantactivityproveninitialadsorptionAdsorptionmicroparticlesQuercetinmatrixPlant-basedproteinsoftenusedcarriersdifferentphenoliccompoundspurposeconstantvaried125DriedcomplexesDPPHFRAPCUPRACmethodsAdditionallyscreeningmixtureresultedontoproportionalcausedchangethermalstabilitycomparisoncorrespondingrevealedstructuralchangesuponBrownRiceAlmondProteinMatrices:EffectConcentration

Similar Articles

Cited By (3)