β-Sheet to Random Coil Transition in Self-Assembling Peptide Scaffolds Promotes Proteolytic Degradation.

Elsa Genové, Nausika Betriu, Carlos E Semino
Author Information
  1. Elsa Genové: Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University, 08017 Barcelona, Spain.
  2. Nausika Betriu: Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University, 08017 Barcelona, Spain. ORCID
  3. Carlos E Semino: Tissue Engineering Research Laboratory, Department of Bioengineering, IQS-School of Engineering, Ramon Llull University, 08017 Barcelona, Spain. ORCID

Abstract

One of the most desirable properties that biomaterials designed for tissue engineering or drug delivery applications should fulfill is biodegradation and resorption without toxicity. Therefore, there is an increasing interest in the development of biomaterials able to be enzymatically degraded once implanted at the injury site or once delivered to the target organ. In this paper, we demonstrate the protease sensitivity of self-assembling amphiphilic peptides, in particular, RAD16-I (AcN-RADARADARADARADA-CONH), which contains four potential cleavage sites for trypsin. We detected that when subjected to thermal denaturation, the peptide secondary structure suffers a transition from β-sheet to random coil. We also used Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) to detect the proteolytic breakdown products of samples subjected to incubation with trypsin as well as atomic force microscopy (AFM) to visualize the effect of the degradation on the nanofiber scaffold. Interestingly, thermally treated samples had a higher extent of degradation than non-denatured samples, suggesting that the transition from β-sheet to random coil leaves the cleavage sites accessible and susceptible to protease degradation. These results indicate that the self-assembling peptide can be reduced to short peptide sequences and, subsequently, degraded to single amino acids, constituting a group of naturally biodegradable materials optimal for their application in tissue engineering and regenerative medicine.

Keywords

References

  1. Cancers (Basel). 2020 May 21;12(5): [PMID: 32455681]
  2. Cancers (Basel). 2021 Sep 07;13(18): [PMID: 34572731]
  3. J Chem Theory Comput. 2019 Jun 11;15(6):3868-3874 [PMID: 31038946]
  4. Polymers (Basel). 2020 Aug 18;12(8): [PMID: 32824691]
  5. Biomolecules. 2020 Apr 28;10(5): [PMID: 32354097]
  6. Gels. 2018 Aug 02;4(3): [PMID: 30674841]
  7. Nat Protoc. 2006;1(6):2876-90 [PMID: 17406547]
  8. J Dent Res. 2008 Jul;87(7):606-16 [PMID: 18573978]
  9. Molecules. 2019 Jan 08;24(1): [PMID: 30625991]
  10. Biomed Res Int. 2017;2017:3656193 [PMID: 28691024]
  11. Acta Biomater. 2021 Aug;130:149-160 [PMID: 34118450]
  12. Biomacromolecules. 2013 Oct 14;14(10):3515-22 [PMID: 23962280]
  13. Int J Nanomedicine. 2019 Sep 12;14:7447-7460 [PMID: 31686816]
  14. Tissue Eng Part A. 2018 Mar;24(5-6):394-406 [PMID: 28873332]
  15. Biophys Chem. 2017 Dec;231:155-160 [PMID: 28318905]
  16. Biomacromolecules. 2018 Nov 12;19(11):4168-4181 [PMID: 30253093]
  17. Nat Rev Mol Cell Biol. 2006 Mar;7(3):211-24 [PMID: 16496023]
  18. Eur Biophys J. 2003 Dec;32(8):661-70 [PMID: 13680207]
  19. Pharmaceuticals (Basel). 2020 Jun 21;13(6): [PMID: 32575910]
  20. Biomaterials. 2005 Jun;26(16):3341-51 [PMID: 15603830]
  21. Mol Cell Proteomics. 2004 Jun;3(6):608-14 [PMID: 15034119]
  22. Nat Biotechnol. 2005 Jan;23(1):47-55 [PMID: 15637621]
  23. J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2507-2516 [PMID: 30784190]
  24. Cardiovasc Res. 2006 Feb 15;69(3):562-73 [PMID: 16405877]
  25. Biomaterials. 2004 Nov;25(26):5735-42 [PMID: 15147819]
  26. Chem Rev. 2020 Dec 23;120(24):13434-13460 [PMID: 33216525]
  27. Trends Pharmacol Sci. 2018 Aug;39(8):766-781 [PMID: 30032745]
  28. Tissue Eng Part A. 2013 Apr;19(7-8):870-81 [PMID: 23157379]
  29. J Biomed Mater Res A. 2008 Nov;87(2):494-504 [PMID: 18186067]
  30. Differentiation. 2003 Jun;71(4-5):262-70 [PMID: 12823227]
  31. J Nanobiotechnology. 2020 Jun 11;18(1):90 [PMID: 32527266]
  32. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  33. Nat Rev Mol Cell Biol. 2014 Dec;15(12):786-801 [PMID: 25415508]
  34. Int J Pharm. 2014 Oct 20;474(1-2):103-11 [PMID: 25148727]
  35. J Vis Exp. 2018 Jun 13;(136): [PMID: 29985312]
  36. J Cell Mol Med. 2009 Sep;13(9B):3387-97 [PMID: 19912437]
  37. Biomacromolecules. 2017 Nov 13;18(11):3563-3571 [PMID: 28828862]
  38. Acc Chem Res. 2006 Sep;39(9):671-9 [PMID: 16981684]
  39. ACS Appl Mater Interfaces. 2020 May 20;12(20):22444-22452 [PMID: 32337967]
  40. PLoS One. 2016 Jun 17;11(6):e0157603 [PMID: 27315119]
  41. Acta Biomater. 2015 Apr;16:35-48 [PMID: 25595471]
  42. Front Bioeng Biotechnol. 2021 Jun 02;9:679525 [PMID: 34164387]
  43. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9996-10001 [PMID: 12119393]
  44. J Biomed Mater Res A. 2016 Jul;104(7):1694-706 [PMID: 26939919]
  45. Tissue Eng Part A. 2017 Dec;23(23-24):1361-1371 [PMID: 28457199]
  46. Nat Commun. 2015 Mar 23;6:6639 [PMID: 25799370]
  47. Tissue Eng Part C Methods. 2016 Jan 7;22(2):113-124 [PMID: 26741987]
  48. Phys Biol. 2011 Apr;8(2):026013 [PMID: 21441648]

MeSH Term

Biocompatible Materials
Peptide Hydrolases
Peptides
Protein Conformation, beta-Strand
Trypsin

Chemicals

Biocompatible Materials
Peptides
Peptide Hydrolases
Trypsin

Word Cloud

Created with Highcharts 10.0.0degradationself-assemblingpeptideβ-sheetrandomcoilsamplesbiomaterialstissueengineeringdegradedproteasepeptidesRAD16-IcleavagesitestrypsinsubjectedtransitionscaffoldOnedesirablepropertiesdesigneddrugdeliveryapplicationsfulfillbiodegradationresorptionwithouttoxicityThereforeincreasinginterestdevelopmentableenzymaticallyimplantedinjurysitedeliveredtargetorganpaperdemonstratesensitivityamphiphilicparticularAcN-RADARADARADARADA-CONHcontainsfourpotentialdetectedthermaldenaturationsecondarystructuresuffersalsousedMatrix-AssistedLaserDesorption/Ionization-Time-Of-FlightMALDI-TOFdetectproteolyticbreakdownproductsincubationwellatomicforcemicroscopyAFMvisualizeeffectnanofiberInterestinglythermallytreatedhigherextentnon-denaturedsuggestingleavesaccessiblesusceptibleresultsindicatecanreducedshortsequencessubsequentlysingleaminoacidsconstitutinggroupnaturallybiodegradablematerialsoptimalapplicationregenerativemedicineβ-SheetRandomCoilTransitionSelf-AssemblingPeptideScaffoldsPromotesProteolyticDegradationproteolysis

Similar Articles

Cited By