Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data.

Fei Zhou, Jie Ren, Yuwen Liu, Xiaoxi Li, Weiqun Wang, Cen Wu
Author Information
  1. Fei Zhou: Department of Statistics, Kansas State University, Manhattan, KS 66506, USA.
  2. Jie Ren: Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
  3. Yuwen Liu: Department of Statistics, Kansas State University, Manhattan, KS 66506, USA.
  4. Xiaoxi Li: Department of Statistics, Kansas State University, Manhattan, KS 66506, USA.
  5. Weiqun Wang: Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA. ORCID
  6. Cen Wu: Department of Statistics, Kansas State University, Manhattan, KS 66506, USA.

Abstract

We introduce , an R package for interaction analysis of repeated measurement data with high-dimensional main and interaction effects. In G × E interaction studies, the forms of environmental factors play a critical role in determining how structured sparsity should be imposed in the high-dimensional scenario to identify important effects. Zhou et al. (2019) (PMID: 31816972) proposed a longitudinal penalization method to select main and interaction effects corresponding to the individual and group structure, respectively, which requires a mixture of individual and group level penalties. The R package implements generalized estimating equation (GEE)-based penalization methods with this sparsity assumption. Moreover, alternative methods have also been implemented in the package. These alternative methods merely select effects on an individual level and ignore the group-level interaction structure. In this software article, we first introduce the statistical methodology corresponding to the penalized GEE methods implemented in the package. Next, we present the usage of the core and supporting functions, which is followed by a simulation example with R codes and annotations. The R package is available at The Comprehensive R Archive Network (CRAN).

Keywords

References

  1. Methods Mol Biol. 2021;2212:191-223 [PMID: 33733358]
  2. Stat Med. 2014 Dec 10;33(28):4988-98 [PMID: 25146388]
  3. Genes (Basel). 2019 Dec 03;10(12): [PMID: 31816972]
  4. High Throughput. 2019 Jan 18;8(1): [PMID: 30669303]
  5. Stat Appl Genet Mol Biol. 2018 Feb 8;17(2): [PMID: 29420308]
  6. Genet Epidemiol. 2019 Apr;43(3):276-291 [PMID: 30746793]
  7. Ann Appl Stat. 2015 Jun;9(2):640-664 [PMID: 26478762]
  8. Stat Methods Med Res. 2014 Feb;23(1):42-59 [PMID: 22523185]
  9. J Multivar Anal. 2018 Nov;168:119-130 [PMID: 30983643]
  10. Stat Med. 2015 Dec 30;34(30):4016-30 [PMID: 26239060]
  11. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  12. Genet Epidemiol. 2012 Jan;36(1):3-16 [PMID: 22161999]
  13. Nat Rev Drug Discov. 2005 Jul;4(7):594-610 [PMID: 16052242]
  14. BMC Genet. 2017 May 16;18(1):44 [PMID: 28511641]
  15. Biometrics. 2012 Jun;68(2):353-60 [PMID: 21955051]
  16. PLoS One. 2015 Feb 23;10(2):e0116398 [PMID: 25706122]
  17. Brief Bioinform. 2015 Sep;16(5):873-83 [PMID: 25479793]
  18. Anal Chim Acta. 2015 Jul 23;885:1-16 [PMID: 26231889]
  19. Brief Bioinform. 2014 Mar;15(2):279-91 [PMID: 23325548]
  20. Cancer Inform. 2020 Dec 10;16:1176935116684825 [PMID: 33354107]
  21. J Am Stat Assoc. 2008 Dec 1;103(484):1556-1569 [PMID: 20054431]
  22. Bioinformatics. 2011 Aug 1;27(15):2119-26 [PMID: 21690105]
  23. Genet Epidemiol. 2022 Jul;46(5-6):317-340 [PMID: 35766061]
  24. Biom J. 2022 Mar;64(3):461-480 [PMID: 34725857]
  25. Hum Genet. 2013 Dec;132(12):1413-25 [PMID: 23974428]
  26. Stat Anal Data Min. 2022 Oct;15(5):648-674 [PMID: 38046814]
  27. Stat Methods Med Res. 2011 Aug;20(4):299-330 [PMID: 20212072]
  28. Stat Med. 2018 Feb 10;37(3):437-456 [PMID: 29034484]
  29. IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1821-1830 [PMID: 31870990]
  30. Stat Med. 2020 Feb 28;39(5):617-638 [PMID: 31863500]

MeSH Term

Algorithms
Data Interpretation, Statistical
Software

Word Cloud

Created with Highcharts 10.0.0RinteractionpackageeffectsmethodsindividualGEEintroduceanalysisdatahigh-dimensionalmainsparsitylongitudinalpenalizationselectcorrespondinggroupstructurelevelalternativeimplementedpenalizedrepeatedmeasurementG×EstudiesformsenvironmentalfactorsplaycriticalroledeterminingstructuredimposedscenarioidentifyimportantZhouetal2019PMID:31816972proposedmethodrespectivelyrequiresmixturepenaltiesimplementsgeneralizedestimatingequation-basedassumptionMoreoveralsomerelyignoregroup-levelsoftwarearticlefirststatisticalmethodologyNextpresentusagecoresupportingfunctionsfollowedsimulationexamplecodesannotationsavailableComprehensiveArchiveNetworkCRANInterep:PackageHigh-DimensionalInteractionAnalysisRepeatedMeasurementDatavariableselection

Similar Articles

Cited By