Recent Advancements in the Fabrication of Functional Nanoporous Materials and Their Biomedical Applications.

Matthew Hadden, David Martinez-Martin, Ken-Tye Yong, Yogambha Ramaswamy, Gurvinder Singh
Author Information
  1. Matthew Hadden: The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
  2. David Martinez-Martin: The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia. ORCID
  3. Ken-Tye Yong: The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
  4. Yogambha Ramaswamy: The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
  5. Gurvinder Singh: The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia. ORCID

Abstract

Functional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. The purpose of this review is to provide recent advances in synthesis strategies for designing ordered or hierarchical nanoporous materials of tunable porosity and complex architectures. Furthermore, we briefly highlight working principles, potential pitfalls, experimental challenges, and limitations associated with nanoporous material fabrication strategies. Finally, we give a forward look at how digitally controlled additive manufacturing may overcome existing obstacles to guide the design and development of next-generation nanoporous materials with predefined properties for industrial manufacturing and applications.

Keywords

References

  1. Sci Adv. 2017 May 26;3(5):e1603171 [PMID: 28560347]
  2. Nanoscale. 2022 Mar 7;14(9):3346-3366 [PMID: 35179152]
  3. Sci Adv. 2018 Aug 31;4(8):eaas9459 [PMID: 30182056]
  4. Materials (Basel). 2020 Aug 21;13(17): [PMID: 32825732]
  5. Natl Sci Rev. 2020 Aug 24;7(11):1667-1701 [PMID: 34691502]
  6. Adv Mater. 2020 Feb;32(6):e1906160 [PMID: 31799755]
  7. ACS Appl Mater Interfaces. 2021 Oct 20;13(41):48709-48719 [PMID: 34636242]
  8. Nanomaterials (Basel). 2020 Aug 15;10(8): [PMID: 32824116]
  9. ACS Omega. 2017 Aug 24;2(8):4911-4919 [PMID: 31457770]
  10. J Am Chem Soc. 2013 Oct 30;135(43):16002-5 [PMID: 24128393]
  11. ACS Appl Mater Interfaces. 2015 Feb 4;7(4):2310-21 [PMID: 25562716]
  12. Langmuir. 2017 Aug 29;33(34):8428-8435 [PMID: 28817284]
  13. Adv Mater. 2021 Dec;33(48):e2103477 [PMID: 34580939]
  14. Acc Chem Res. 2016 Jul 19;49(7):1351-8 [PMID: 27294847]
  15. Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:95-103 [PMID: 29636143]
  16. Bioact Mater. 2019 Nov 01;4:346-357 [PMID: 31720491]
  17. ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15373-15382 [PMID: 33764729]
  18. Materials (Basel). 2010 Aug 25;3(8):4500-4509 [PMID: 28883338]
  19. Sensors (Basel). 2020 May 17;20(10): [PMID: 32429533]
  20. Nature. 2001 Mar 22;410(6827):450-3 [PMID: 11260708]
  21. Nanomaterials (Basel). 2019 Dec 16;9(12): [PMID: 31888222]
  22. Science. 2014 Sep 5;345(6201):1149-53 [PMID: 25061133]
  23. Nat Rev Mater. 2020;5(9):637-639 [PMID: 35194517]
  24. Nanoscale. 2016 Apr 21;8(15):8384-9 [PMID: 27045732]
  25. Biomater Res. 2021 Sep 26;25(1):30 [PMID: 34565474]
  26. J Mater Sci Mater Med. 2020 Jul 8;31(7):60 [PMID: 32642974]
  27. Nanomaterials (Basel). 2018 Jan 25;8(2): [PMID: 29370128]
  28. Annu Rev Chem Biomol Eng. 2021 Jun 7;12:137-162 [PMID: 33770464]
  29. Nanomaterials (Basel). 2015 Nov 17;5(4):1971-1984 [PMID: 28347106]
  30. J Am Chem Soc. 2019 May 1;141(17):7073-7080 [PMID: 30964289]
  31. Nat Commun. 2017 Oct 20;8(1):1066 [PMID: 29057916]
  32. J Control Release. 2022 Mar;343:187-206 [PMID: 35090962]
  33. Adv Mater. 2018 Oct;30(41):e1706755 [PMID: 29774611]
  34. Phys Chem Chem Phys. 2015 Jun 14;17(22):14702-9 [PMID: 25972227]
  35. Nat Commun. 2015 Mar 16;6:6567 [PMID: 25910892]
  36. Molecules. 2015 Mar 31;20(4):5638-66 [PMID: 25838169]
  37. ACS Appl Mater Interfaces. 2017 Feb 15;9(6):5590-5599 [PMID: 28103013]
  38. Langmuir. 2016 Aug 9;32(31):7757-64 [PMID: 27406856]
  39. Bioact Mater. 2021 Jul 01;8:109-123 [PMID: 34541390]
  40. J Nanosci Nanotechnol. 2019 Jul 1;19(7):3673-3685 [PMID: 30764925]
  41. J Am Chem Soc. 2013 Jan 30;135(4):1524-30 [PMID: 23282081]
  42. Mater Sci Eng C Mater Biol Appl. 2021 Nov;130:112429 [PMID: 34702514]
  43. Small. 2019 May;15(22):e1805432 [PMID: 31026109]
  44. Science. 2011 Jul 15;333(6040):328-32 [PMID: 21764745]
  45. Nat Commun. 2018 Jan 18;9(1):276 [PMID: 29348401]
  46. Sci Rep. 2017 May 18;7(1):2089 [PMID: 28522866]
  47. Front Chem. 2021 Jul 21;9:716294 [PMID: 34368085]
  48. Nanomaterials (Basel). 2017 Jul 30;7(8): [PMID: 28758955]
  49. Nat Mater. 2013 Dec;12(12):1102-6 [PMID: 23975058]
  50. Nat Commun. 2021 Jan 11;12(1):247 [PMID: 33431911]
  51. J Phys Chem B. 2021 Jun 10;125(22):6012-6022 [PMID: 34038121]
  52. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Sep-Oct;1(5):568-81 [PMID: 20049818]
  53. J Am Chem Soc. 2013 Mar 20;135(11):4516-21 [PMID: 23448405]
  54. Nat Nanotechnol. 2011 Apr;6(4):232-6 [PMID: 21336267]
  55. Nat Nanotechnol. 2020 Apr;15(4):256-271 [PMID: 32303705]

Word Cloud

Created with Highcharts 10.0.0nanoporousmaterialsmanufacturingFunctionaltunableporositypropertiesapplicationsstrategieshierarchicaladditivecategorizedimportantclassnanostructuredporegeometrysizeshapedistributionuniquechemicalphysicalcomparednanostructuresbulkcounterpartsProgressdevelopingbroadspectrumaccelerateduseextensivecatalysissensingseparationenvironmentalenergybiomedicalareaspurposereviewproviderecentadvancessynthesisdesigningorderedcomplexarchitecturesFurthermorebrieflyhighlightworkingprinciplespotentialpitfallsexperimentalchallengeslimitationsassociatedmaterialfabricationFinallygiveforwardlookdigitallycontrolledmayovercomeexistingobstaclesguidedesigndevelopmentnext-generationpredefinedindustrialRecentAdvancementsFabricationNanoporousMaterialsBiomedicalApplicationsdealloyingnanoporosity

Similar Articles

Cited By