Antibiofilm Activity of β-Lactam/β-Lactamase Inhibitor Combination against Multidrug-Resistant Typhimurium.

Nana Nguefang Laure, Juhee Ahn
Author Information
  1. Nana Nguefang Laure: Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea.
  2. Juhee Ahn: Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea. ORCID

Abstract

This study was designed to assess the effect of β-lactam/β-lactamase inhibitor combinations on the inhibition of biofilm formation of Typhimurium. The anti-planktonic and anti-biofilm activities of ampicillin (AMP), ceftriaxone (CEF), and combination treatments of antibiotics and sulbactam (AMP + SUL and CEF + SUL) were evaluated against antibiotic-sensitive . Typhimurium ATCC 19585 (ST) and clinically isolated multidrug-resistant (MDR) . Typhimurium CCARM 8009 (ST). Compared to the control, the minimum inhibitory concentrations (MICs) of AMP against ST and CEF against ST were decreased from 32 to 16 μg/mL and 0.25 to 0.125 μg/mL, respectively, in the presence of SUL. The numbers of ST treated with AMP + SUL and CEF + SUL were effectively reduced by more than 2 logs after 4 h of incubation at 37 °C. The β-lactamase activities of ST and ST treated with AMP and CEF were reduced from 3.3 to 2.6 μmol/min/mL and from 8.3 to 3.4 μmol/min/mL, respectively, in the presence of SUL. The biofilm cell numbers of ST and ST were reduced at all treatments after 24 h of incubation at 37 °C. The biofilm cell numbers of ST and ST were reduced by more than 2 logs in the presence of SUL compared to the AMP and CEF alone. The lowest relative fitness level was 0.6 in ST treated with AMP + SUL, while no significant differences in the relative fitness were observed in ST. This study suggests that β-lactamase inhibitors (BLIs) could be used for controlling biofilm formation of β-lactamase-producing multidrug-resistant . Typhimurium.

Keywords

References

  1. Antimicrob Agents Chemother. 2010 Jan;54(1):367-74 [PMID: 19917752]
  2. J Antimicrob Chemother. 2004 Aug;54(2):401-5 [PMID: 15269194]
  3. PLoS One. 2011 Mar 01;6(3):e16801 [PMID: 21390297]
  4. J Med Chem. 2020 Mar 12;63(5):1859-1881 [PMID: 31663735]
  5. Antimicrob Resist Infect Control. 2016 Feb 15;5:5 [PMID: 26885364]
  6. Clin Microbiol Rev. 2010 Jan;23(1):160-201 [PMID: 20065329]
  7. Antibiotics (Basel). 2021 Nov 03;10(11): [PMID: 34827279]
  8. Elife. 2019 Aug 16;8: [PMID: 31418687]
  9. Microbiol Spectr. 2016 Apr;4(2): [PMID: 27227291]
  10. FEMS Microbiol Lett. 2018 Apr 1;365(8): [PMID: 29566229]
  11. Antimicrob Agents Chemother. 2015 Mar;59(3):1680-9 [PMID: 25561334]
  12. Medchemcomm. 2018 Aug 17;9(9):1439-1456 [PMID: 30288219]
  13. Antimicrob Resist Infect Control. 2016 Nov 16;5:44 [PMID: 27895902]
  14. Antimicrob Resist Infect Control. 2017 Jan 17;6:13 [PMID: 28105330]
  15. Front Microbiol. 2013 Dec 24;4:392 [PMID: 24399995]
  16. Antimicrob Agents Chemother. 2005 Apr;49(4):1426-31 [PMID: 15793122]
  17. mBio. 2012 Jul 31;3(4):e00198-12 [PMID: 22851659]
  18. Int J Antimicrob Agents. 2004 Jun;23(6):590-5 [PMID: 15194130]
  19. Front Microbiol. 2020 Feb 07;11:35 [PMID: 32117094]
  20. Front Microbiol. 2013 May 22;4:128 [PMID: 23734147]
  21. Front Microbiol. 2020 Apr 29;11:801 [PMID: 32411120]
  22. Microb Drug Resist. 2021 Apr;27(4):441-449 [PMID: 32255738]
  23. Cell. 2014 Dec 4;159(6):1300-11 [PMID: 25480295]
  24. Front Microbiol. 2016 Aug 19;7:1268 [PMID: 27594850]
  25. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28971872]
  26. Exp Ther Med. 2018 Mar;15(3):2247-2254 [PMID: 29563975]
  27. J Glob Infect Dis. 2010 Sep;2(3):258-62 [PMID: 20927288]
  28. PLoS Pathog. 2012;8(11):e1003043 [PMID: 23209414]
  29. Front Microbiol. 2021 Feb 04;12:604079 [PMID: 33613478]
  30. Int J Food Microbiol. 2021 Apr 16;344:109109 [PMID: 33677191]
  31. PLoS One. 2014 May 08;9(5):e97202 [PMID: 24810745]
  32. Antibiotics (Basel). 2021 Aug 17;10(8): [PMID: 34439045]
  33. Infect Drug Resist. 2021 Sep 28;14:3971-3977 [PMID: 34611414]
  34. Res Microbiol. 2004 Jun;155(5):360-9 [PMID: 15207868]
  35. Int J Microbiol. 2019 Sep 8;2019:1375060 [PMID: 31582981]
  36. Sci Rep. 2020 Feb 20;10(1):3042 [PMID: 32080217]
  37. Int J Antimicrob Agents. 2019 Jan;53(1):16-21 [PMID: 30236954]
  38. Antimicrob Resist Infect Control. 2019 May 16;8:76 [PMID: 31131107]
  39. Clin Microbiol Infect. 2008 Jan;14 Suppl 1:185-8 [PMID: 18154545]

Grants

  1. NRF-2016R1D1A3B01008304/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0STSULAMPCEFTyphimurium+biofilmreduced30presencenumberstreated2β-lactamasestudyformationanti-biofilmactivitiesampicillinceftriaxonetreatmentssulbactammultidrug-resistantμg/mLrespectivelylogs4hincubation37°C6μmol/min/mLcellrelativefitnessdesignedassesseffectβ-lactam/β-lactamaseinhibitorcombinationsinhibitionanti-planktoniccombinationantibioticsevaluatedantibiotic-sensitiveATCC19585clinicallyisolatedMDRCCARM8009ComparedcontrolminimuminhibitoryconcentrationsMICsdecreased321625125effectively824comparedalonelowestlevelsignificantdifferencesobservedsuggestsinhibitorsBLIsusedcontrollingβ-lactamase-producingAntibiofilmActivityβ-Lactam/β-LactamaseInhibitorCombinationMultidrug-ResistantSalmonellaantibioticresistanceactivity

Similar Articles

Cited By (1)