Capturing Upper Body Kinematics and Localization with Low-Cost Sensors for Rehabilitation Applications.

Anik Sarker, Don-Roberts Emenonye, Aisling Kelliher, Thanassis Rikakis, R Michael Buehrer, Alan T Asbeck
Author Information
  1. Anik Sarker: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. ORCID
  2. Don-Roberts Emenonye: Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA. ORCID
  3. Aisling Kelliher: Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA. ORCID
  4. Thanassis Rikakis: Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
  5. R Michael Buehrer: Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA. ORCID
  6. Alan T Asbeck: Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. ORCID

Abstract

For upper extremity rehabilitation, quantitative measurements of a person's capabilities during activities of daily living could provide useful information for therapists, including in telemedicine scenarios. Specifically, measurements of a person's upper body kinematics could give information about which arm motions or movement features are in need of additional therapy, and their location within the home could give context to these motions. To that end, we present a new algorithm for identifying a person's location in a region of interest based on a Bluetooth received signal strength (RSS) and present an experimental evaluation of this and a different Bluetooth RSS-based localization algorithm via fingerprinting. We further present algorithms for and experimental results of inferring the complete upper body kinematics based on three standalone inertial measurement unit (IMU) sensors mounted on the wrists and pelvis. Our experimental results for localization find the target location with a mean square error of 1.78 m. Our kinematics reconstruction algorithms gave lower errors with the pelvis sensor mounted on the person's back and with individual calibrations for each test. With three standalone IMUs, the mean angular error for all of the upper body segment orientations was close to 21 degrees, and the estimated elbow and shoulder angles had mean errors of less than 4 degrees.

Keywords

References

  1. Sensors (Basel). 2016 Dec 15;16(12): [PMID: 27983676]
  2. IEEE Trans Pattern Anal Mach Intell. 2014 Jul;36(7):1325-39 [PMID: 26353306]
  3. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4150-3 [PMID: 19163626]
  4. Inform Health Soc Care. 2014 Sep-Dec;39(3-4):262-71 [PMID: 25148561]
  5. IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186 [PMID: 31331883]
  6. Ergonomics. 2013;56(2):314-26 [PMID: 23231730]
  7. J Speech Lang Hear Res. 2008 Feb;51(1):S225-39 [PMID: 18230848]
  8. Phys Ther. 2015 Mar;95(3):449-60 [PMID: 25425694]
  9. Gait Posture. 2019 May;70:211-217 [PMID: 30903993]
  10. Sensors (Basel). 2020 Nov 06;20(21): [PMID: 33171977]
  11. Sensors (Basel). 2018 Feb 28;18(3): [PMID: 29495600]
  12. Arch Phys Med Rehabil. 2012 Nov;93(11):1975-81 [PMID: 22465403]
  13. Sensors (Basel). 2020 Dec 08;20(24): [PMID: 33302346]
  14. PLoS One. 2022 Jan 21;17(1):e0262730 [PMID: 35061781]
  15. Neurorehabil Neural Repair. 2009 May;23(4):313-9 [PMID: 19118128]
  16. Sensors (Basel). 2019 Jan 21;19(2): [PMID: 30669617]
  17. IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):395-405 [PMID: 16200762]
  18. Sensors (Basel). 2021 Nov 03;21(21): [PMID: 34770620]
  19. Arch Phys Med Rehabil. 2005 Jul;86(7):1498-501 [PMID: 16003690]
  20. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  21. Biomed Eng Online. 2020 Apr 23;19(1):25 [PMID: 32326957]
  22. Sensors (Basel). 2021 May 17;21(10): [PMID: 34067813]
  23. BMC Neurol. 2012 Apr 12;12:21 [PMID: 22498041]
  24. IEEE Trans Neural Netw. 2008 Nov;19(11):1973-8 [PMID: 19000967]
  25. Med Biol Eng Comput. 2007 Oct;45(10):947-56 [PMID: 17661100]
  26. Sensors (Basel). 2017 Jun 06;17(6): [PMID: 28587285]
  27. J Hand Ther. 2013 Apr-Jun;26(2):104-14;quiz 115 [PMID: 22975740]
  28. Healthc Inform Res. 2017 Jan;23(1):4-15 [PMID: 28261526]
  29. Sensors (Basel). 2020 Jan 07;20(2): [PMID: 31936175]
  30. Sensors (Basel). 2021 Feb 02;21(3): [PMID: 33540703]
  31. IEEE Trans Biomed Eng. 2022 Feb;69(2):678-688 [PMID: 34383640]
  32. Sensors (Basel). 2020 Apr 12;20(8): [PMID: 32290639]

Grants

  1. 2014499/National Science Foundation

MeSH Term

Activities of Daily Living
Biomechanical Phenomena
Elbow
Humans
Movement
Range of Motion, Articular

Word Cloud

Created with Highcharts 10.0.0upperperson'skinematicsBluetoothbodylocationpresentexperimentallocalizationsensorsmeanmeasurementsinformationgivemotionsalgorithmbasedRSSalgorithmsresultsthreestandaloneinertialmountedpelviserrorerrorsdegreesextremityrehabilitationquantitativecapabilitiesactivitiesdailylivingprovideusefultherapistsincludingtelemedicinescenariosSpecificallyarmmovementfeaturesneedadditionaltherapywithinhomecontextendnewidentifyingregioninterestreceivedsignalstrengthevaluationdifferentRSS-basedviafingerprintinginferringcompletemeasurementunitIMUwristsfindtargetsquare178mreconstructiongavelowersensorbackindividualcalibrationstestIMUsangularsegmentorientationsclose21estimatedelbowshoulderanglesless4CapturingUpperBodyKinematicsLocalizationLow-CostSensorsRehabilitationApplicationsbeaconactivityrecognitionhumanposeestimationproximityreportingself-supervisedlearningsparse

Similar Articles

Cited By