Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes.

Erica K Sinner, Daniel R Marous, Craig A Townsend
Author Information
  1. Erica K Sinner: Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States. ORCID
  2. Daniel R Marous: Department of Chemistry, Wittenberg University, Springfield, Ohio 45504, United States. ORCID
  3. Craig A Townsend: Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Abstract

While bioinformatic evidence of cobalamin-dependent radical -adenosylmethionine (SAM) enzymes has existed since the naming of the radical SAM superfamily in 2001, none were biochemically characterized until 2011. In the past decade, the field has flourished as methodological advances have facilitated study of the subfamily. Because of the ingenuity and perseverance of researchers in this field, we now have functional, mechanistic, and structural insight into how this class of enzymes harnesses the power of both the cobalamin and radical SAM cofactors to achieve catalysis. All of the early characterized enzymes in this subfamily were methylases, but the activity of these enzymes has recently been expanded beyond methylation. We anticipate that the characterized functions of these enzymes will become both better understood and increasingly diverse with continued study.

Keywords

References

  1. Nucleic Acids Res. 2001 Mar 1;29(5):1097-106 [PMID: 11222759]
  2. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11128-33 [PMID: 18678912]
  3. Biochemistry. 2018 Aug 21;57(33):4963-4966 [PMID: 29966085]
  4. Chem Rev. 2014 Apr 23;114(8):4229-317 [PMID: 24476342]
  5. Nat Chem. 2017 Apr;9(4):387-395 [PMID: 28338684]
  6. Curr Opin Chem Biol. 2016 Dec;35:73-79 [PMID: 27632683]
  7. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10354-8 [PMID: 26240322]
  8. Nat Chem Biol. 2021 Apr;17(4):485-491 [PMID: 33462497]
  9. Nat Chem Biol. 2012 Dec;8(12):957-9 [PMID: 23064318]
  10. Methods Enzymol. 2004;380:152-69 [PMID: 15051336]
  11. Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):63-88 [PMID: 18307109]
  12. Biochemistry. 2011 Oct 25;50(42):8986-8 [PMID: 21950770]
  13. Methods Enzymol. 2022;669:29-44 [PMID: 35644176]
  14. Curr Opin Chem Biol. 2016 Dec;35:97-108 [PMID: 27693891]
  15. Biochemistry. 2018 Aug 21;57(33):4972-4984 [PMID: 30036047]
  16. Chem Biol. 2015 Feb 19;22(2):251-61 [PMID: 25641167]
  17. Biochemistry. 2004 Jun 1;43(21):6378-86 [PMID: 15157071]
  18. Chembiochem. 2011 Sep 19;12(14):2159-65 [PMID: 21913298]
  19. Antimicrob Agents Chemother. 2011 Apr;55(4):1638-49 [PMID: 21263049]
  20. Nature. 2017 Apr 20;544(7650):322-326 [PMID: 28346939]
  21. J Am Chem Soc. 2020 Jun 3;142(22):9944-9954 [PMID: 32374991]
  22. Methods Enzymol. 2012;516:125-52 [PMID: 23034227]
  23. Biochemistry. 2009 Sep 22;48(37):8830-41 [PMID: 19640006]
  24. J Biol Chem. 2015 Feb 13;290(7):3995-4002 [PMID: 25477520]
  25. Methods Enzymol. 2018;604:259-286 [PMID: 29779655]
  26. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6908-13 [PMID: 10841582]
  27. J Am Chem Soc. 2016 Mar 16;138(10):3416-26 [PMID: 26841310]
  28. Biochemistry. 2008 Jul 15;47(28):7523-38 [PMID: 18558715]
  29. Biochemistry. 2018 Mar 6;57(9):1475-1490 [PMID: 29298049]
  30. Arch Biochem Biophys. 2014 Feb 1;543:67-73 [PMID: 24370735]
  31. Chembiochem. 2014 Jan 24;15(2):320-31 [PMID: 24420617]
  32. Chem Commun (Camb). 2019 Dec 10;55(99):14934-14937 [PMID: 31774078]
  33. J Am Chem Soc. 2016 Dec 7;138(48):15515-15518 [PMID: 27934015]
  34. Biochemistry. 2004 Sep 21;43(37):11770-81 [PMID: 15362861]
  35. Biochemistry. 2018 Aug 21;57(33):4967-4971 [PMID: 29969250]
  36. Biochemistry. 2021 Feb 23;60(7):537-546 [PMID: 33560833]
  37. J Biol Chem. 2015 Feb 13;290(7):3964-71 [PMID: 25477505]
  38. Dalton Trans. 2011 Oct 14;40(38):9831-4 [PMID: 21879074]
  39. Methods Enzymol. 2018;606:199-216 [PMID: 30097093]
  40. Biochim Biophys Acta. 2014 Dec;1844(12):2135-44 [PMID: 25224746]
  41. J Am Chem Soc. 2010 Jan 13;132(1):12-3 [PMID: 20017478]
  42. Curr Opin Chem Biol. 2009 Feb;13(1):58-73 [PMID: 19297239]
  43. Annu Rev Biochem. 2018 Jun 20;87:555-584 [PMID: 29925255]
  44. J Am Chem Soc. 2017 Nov 15;139(45):16084-16087 [PMID: 29091410]
  45. J Biol Chem. 2019 Aug 2;294(31):11712-11725 [PMID: 31113866]
  46. Biochemistry. 2021 May 25;60(20):1587-1596 [PMID: 33942609]
  47. Chem Biol. 2003 Apr;10(4):301-11 [PMID: 12725858]
  48. Biochemistry. 2013 Apr 30;52(17):2874-87 [PMID: 23477283]
  49. Methods Enzymol. 2017;595:303-329 [PMID: 28882204]
  50. J Am Chem Soc. 2013 Jun 5;135(22):8093-6 [PMID: 23679096]
  51. Nat Prod Rep. 2018 Aug 15;35(8):707-720 [PMID: 30079906]
  52. J Am Chem Soc. 2017 Feb 8;139(5):1742-1745 [PMID: 28040895]
  53. J Biol Chem. 1998 May 22;273(21):13264-72 [PMID: 9582371]

Grants

  1. R01 AI014937/NIAID NIH HHS
  2. R01 AI121072/NIAID NIH HHS
  3. R37 AI014937/NIAID NIH HHS
  4. T32 GM080189/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0SAMenzymesradicalcharacterizedfieldstudysubfamilycobalaminbioinformaticevidencecobalamin-dependent-adenosylmethionineexistedsincenamingsuperfamily2001nonebiochemically2011pastdecadeflourishedmethodologicaladvancesfacilitatedingenuityperseveranceresearchersnowfunctionalmechanisticstructuralinsightclassharnessespowercofactorsachievecatalysisearlymethylasesactivityrecentlyexpandedbeyondmethylationanticipatefunctionswillbecomebetterunderstoodincreasinglydiversecontinuedEvolutionMethodsStudyCobalamin-DependentRadicalEnzymesB12biosynthesiscarbapenemnaturalproductsenzyme

Similar Articles

Cited By