Temporal learning in the suprasecond range: insights from cognitive style.

Alice Teghil, Fabrizia D'Antonio, Antonella Di Vita, Cecilia Guariglia, Maddalena Boccia
Author Information
  1. Alice Teghil: Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy. alice.teghil@uniroma1.it. ORCID
  2. Fabrizia D'Antonio: Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy.
  3. Antonella Di Vita: Department of Human Neuroscience, "Sapienza" University of Rome, Rome, Italy.
  4. Cecilia Guariglia: Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
  5. Maddalena Boccia: Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.

Abstract

The acquisition of information on the timing of events or actions (temporal learning) occurs in both the subsecond and suprasecond range. However, although relevant differences between participants have been reported in temporal learning, the role of dimensions of individual variability in affecting performance in such tasks is still unclear. Here we investigated this issue, assessing the effect of field-dependent/independent cognitive style on temporal learning in the suprasecond range. Since different mechanisms mediate timing when a temporal representation is self-generated, and when it depends on an external referent, temporal learning was assessed in two conditions. Participants observed a stimulus across six repetitions and reproduced it. Unbeknownst to them, in an internally-based learning (IBL) condition, the stimulus duration was fixed within a trial, although the number of events defining it varied; in an externally-cued learning (ECL) condition, the stimulus was defined by the same number of events within each trial, although its duration varied. The effect of the reproduction modality was also assessed (motor vs. perceptual). Error scores were higher in IBL compared to ECL; the reverse was true for variability. Field-independent individuals performed better than field-dependent ones only in IBL, as further confirmed by correlation analyses. Findings provide evidence that differences in dimensions of variability in high-level cognitive functioning, such as field dependence/independence, significantly affect temporal learning in the suprasecond range, and that this effect depends on the type of temporal representation fostered by the specific task demands.

References

  1. Aguirre, M., Couderc, A., Epinat-Duclos, J., & Mascaro, O. (2019). Infants discriminate the source of social touch at stroking speeds eliciting maximal firing rates in CT-fibers. Developmental Cognitive Neuroscience, 36, 100639. https://doi.org/10.1016/j.dcn.2019.100639 [DOI: 10.1016/j.dcn.2019.100639]
  2. Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the internal clock: First-and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771. [DOI: 10.1146/annurev-psych-010213-115117]
  3. Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring specific items to forming general rules. Current Directions in Psychological Science, 21(3), 170–176. https://doi.org/10.1177/0963721412436806 [DOI: 10.1177/0963721412436806]
  4. Baker, R., Dexter, M., Hardwicke, T. E., Goldstone, A., & Kourtzi, Z. (2014). Learning to predict: Exposure to temporal sequences facilitates prediction of future events. Vision Research, 99, 124–133. https://doi.org/10.1016/j.visres.2013.10.017 [DOI: 10.1016/j.visres.2013.10.017]
  5. Barnett, A. J., O’Neil, E. B., Watson, H. C., & Lee, A. C. (2014). The human hippocampus is sensitive to the durations of events and intervals within a sequence. Neuropsychologia, 64, 1–12. https://doi.org/10.1016/j.neuropsychologia.2014.09.011 [DOI: 10.1016/j.neuropsychologia.2014.09.011]
  6. Bartolo, R., & Merchant, H. (2009). Learning and generalization of time production in humans: Rules of transfer across modalities and interval durations. Experimental Brain Research, 197(1), 91–100. https://doi.org/10.1007/s00221-009-1895-1 [DOI: 10.1007/s00221-009-1895-1]
  7. Basso, A., Capitani, E., & Laiacona, M. (1987). Raven’s coloured progressive matrices: Normative values on 305 adult normal controls. Functional Neurology, 2(2), 189–194. [PMID: 3666548]
  8. Boccia, M., Piccardi, L., D’Alessandro, A., Nori, R., & Guariglia, C. (2017). Restructuring the navigational field: Individual predisposition towards field independence predicts preferred navigational strategy. Experimental Brain Research, 235(6), 1741–1748. https://doi.org/10.1007/s00221-017-4936-1 [DOI: 10.1007/s00221-017-4936-1]
  9. Boccia, M., Vecchione, F., Di Vita, A., D’Amico, S., Guariglia, C., & Piccardi, L. (2019). Effect of cognitive style on topographical learning across life span: insights from normal development. Child Development, 90, 462–470. https://doi.org/10.1111/cdev.13184 [DOI: 10.1111/cdev.13184]
  10. Boccia, M., Vecchione, F., Piccardi, L., & Guariglia, C. (2017). Effect of cognitive style on learning and retrieval of navigational environments. Frontiers in Pharmacology, 8, 496. https://doi.org/10.3389/fphar.2017.00496 [DOI: 10.3389/fphar.2017.00496]
  11. Brandon, M., Terry, J., Stevens, C. J., & Tillmann, B. (2012). Incidental learning of temporal structures conforming to a metrical framework. Frontiers in Psychology, 3, 294. https://doi.org/10.3389/fpsyg.2012.00294 [DOI: 10.3389/fpsyg.2012.00294]
  12. Bratzke, D., Schröter, H., & Ulrich, R. (2014). The role of consolidation for perceptual learning in temporal discrimination within and across modalities. Acta Psychologica, 147, 75–79. https://doi.org/10.1016/j.actpsy.2013.06.018 [DOI: 10.1016/j.actpsy.2013.06.018]
  13. Bratzke, D., Seifried, T., & Ulrich, R. (2012). Perceptual learning in temporal discrimination: Asymmetric cross-modal transfer from audition to vision. Experimental Brain Research, 221(2), 205–210. https://doi.org/10.1007/s00221-012-3162-0 [DOI: 10.1007/s00221-012-3162-0]
  14. Bueti, D., & Buonomano, D. V. (2014). Temporal perceptual learning. Timing & Time Perception, 2, 261–289. https://doi.org/10.1163/22134468-00002023 [DOI: 10.1163/22134468-00002023]
  15. Bueti, D., Lasaponara, S., Cercignani, M., & Macaluso, E. (2012). Learning about time: Plastic changes and interindividual brain differences. Neuron, 75(4), 725–737. https://doi.org/10.1016/j.neuron.2012.07.019 [DOI: 10.1016/j.neuron.2012.07.019]
  16. Bueti, D., & Macaluso, E. (2010). Auditory temporal expectations modulate activity in visual cortex. NeuroImage, 51(3), 1168–1183. https://doi.org/10.1016/j.neuroimage.2010.03.023 [DOI: 10.1016/j.neuroimage.2010.03.023]
  17. Bueti, D., & Walsh, V. (2010). Memory for time distinguishes between perception and action. Perception, 39(1), 81–90. https://doi.org/10.1068/p6405 [DOI: 10.1068/p6405]
  18. Bueti, D., Walsh, V., Frith, C., & Rees, G. (2008). Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience, 20(2), 204–214. https://doi.org/10.1162/jocn.2008.20017 [DOI: 10.1162/jocn.2008.20017]
  19. Church, R. M. (2012). Temporal learning in humans and other animals. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning. Springer.
  20. Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(3), 1056–1060. https://doi.org/10.1523/JNEUROSCI.3411-11.2012 [DOI: 10.1523/JNEUROSCI.3411-11.2012]
  21. Clewett, D., DuBrow, S., & Davachi, L. (2019). Transcending time in the brain: How event memories are constructed from experience. Hippocampus, 29(3), 162–183. https://doi.org/10.1002/hipo.23074 [DOI: 10.1002/hipo.23074]
  22. Corson, Y., Verrier, N., & Bucic, A. (2009). False memories and individual variations: The role of field dependence–independence. Personality and Individual Differences, 47(1), 8–11. https://doi.org/10.1016/j.paid.2009.01.036 [DOI: 10.1016/j.paid.2009.01.036]
  23. Coull, J. T., & Droit-Volet, S. (2018). Explicit understanding of duration develops implicitly through action. Trends in Cognitive Sciences, 22(10), 923–937. https://doi.org/10.1016/j.tics.2018.07.011 [DOI: 10.1016/j.tics.2018.07.011]
  24. Coull, J. T., Vidal, F., & Burle, B. (2016). When to act, or not to act: That’s the SMA’s question. Current Opinion in Behavioral Sciences, 8, 14–21. https://doi.org/10.1016/j.cobeha.2016.01.003 [DOI: 10.1016/j.cobeha.2016.01.003]
  25. De Kock, R., Gladhill, K. A., Ali, M. N., Joiner, W. M., & Wiener, M. (2021). How movements shape the perception of time. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2021.08.002 [DOI: 10.1016/j.tics.2021.08.002]
  26. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146 [DOI: 10.3758/bf03193146]
  27. Gardner, R. W., Jackson, D. N., & Messick, S. J. (1960). Personality organization in cognitive control and intellectual abilities. Psychological Issues, 2(4), 8.
  28. Gavazzi, G., Bisio, A., & Pozzo, T. (2013). Time perception of visual motion is tuned by the motor representation of human actions. Scientific Reports, 3, 1168. https://doi.org/10.1038/srep01168 [DOI: 10.1038/srep01168]
  29. Goel, A., & Buonomano, D. V. (2014). Timing as an intrinsic property of neural networks: Evidence from in vivo and in vitro experiments. Philosophical Transactions of the Royal Society of London Series b, Biological Sciences, 369(1637), 20120460. https://doi.org/10.1098/rstb.2012.0460 [DOI: 10.1098/rstb.2012.0460]
  30. Gooch, C. M., Wiener, M., Hamilton, A. C., & Coslett, H. B. (2011). Temporal discrimination of sub- and suprasecond time intervals: A voxel-based lesion mapping analysis. Frontiers in Integrative Neuroscience, 5, 59. https://doi.org/10.3389/fnint.2011.00059 [DOI: 10.3389/fnint.2011.00059]
  31. Goode, P. E., Goddard, P. H., & Pascual-Leone, J. (2002). Event-related potentials index cognitive style differences during a serial-order recall task. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 43(2), 123–140. https://doi.org/10.1016/s0167-8760(01)00158-1 [DOI: 10.1016/s0167-8760(01)00158-1]
  32. Grondin, S., Bisson, N., Gagnon, C., Gamache, P., & Matteau, A. (2009). Little to be expected from auditory training for improving visual temporal discrimination. Neuroquantology, 7, 95–102. [DOI: 10.14704/nq.2009.7.1.211]
  33. Guisande, M. A., Páramo, M. F., Tinajero, C., & Almeida, L. S. (2007). Field dependence-independence (FDI) cognitive style: An analysis of attentional functioning. Psicothema, 19(4), 572–577. [PMID: 17959109]
  34. Hayashi, M. J., Kantele, M., Walsh, V., Carlson, S., & Kanai, R. (2014). Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. Journal of Cognitive Neuroscience, 26(8), 1685–1693. https://doi.org/10.1162/jocn_a_00580 [DOI: 10.1162/jocn_a_00580]
  35. Herbst, S. K., & Obleser, J. (2017). Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response. Neuropsychologia, 101, 141–152. https://doi.org/10.1016/j.neuropsychologia.2017.05.019 [DOI: 10.1016/j.neuropsychologia.2017.05.019]
  36. Hinton, S. C., & Rao, S. M. (2004). One-thousand one… one-thousand two…: chronometric counting violates the scalar property in interval timing. Psychonomic Bulletin & Review, 11(1), 24–30. [DOI: 10.3758/BF03206456]
  37. Imanaka, M., Kakigi, R., & Nakata, H. (2017). The relationship between cognitive style and event-related potentials during auditory and somatosensory Go/No-go paradigms. NeuroReport, 28(13), 822–827. https://doi.org/10.1097/WNR.0000000000000833 [DOI: 10.1097/WNR.0000000000000833]
  38. Ivry, R. B., & Hazeltine, R. E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 3–18. [DOI: 10.1037/0096-1523.21.1.3]
  39. Jia, S., Zhang, Q., & Li, S. (2014). Field dependence-independence modulates the efficiency of filtering out irrelevant information in a visual working memory task. Neuroscience, 278, 136–143. https://doi.org/10.1016/j.neuroscience.2014.07.075 [DOI: 10.1016/j.neuroscience.2014.07.075]
  40. Jiménez-Urbieta, H., Gago, B., Quiroga-Varela, A., Rodríguez-Chinchilla, T., Merino-Galán, L., Delgado-Alvarado, M., Navalpotro-Gómez, I., Belloso-Iguerategui, A., Marin, C., & Rodríguez-Oroz, M. C. (2020). Motor impulsivity and delay intolerance are elicited in a dose-dependent manner with a dopaminergic agonist in parkinsonian rats. Psychopharmacology (berl). https://doi.org/10.1007/s00213-020-05544-6 [DOI: 10.1007/s00213-020-05544-6]
  41. Karabanov, A., & Ullén, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. Journal of Neurophysiology, 100(2), 733–739. https://doi.org/10.1152/jn.01303.2007 [DOI: 10.1152/jn.01303.2007]
  42. Karmarkar, U. R., & Buonomano, D. V. (2003). Temporal specificity of perceptual learning in an auditory discrimination task. Learning & Memory, 10(2), 141–147. https://doi.org/10.1101/lm.55503 [DOI: 10.1101/lm.55503]
  43. Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53(3), 427–438. https://doi.org/10.1016/j.neuron.2007.01.006 [DOI: 10.1016/j.neuron.2007.01.006]
  44. Laje, R., Cheng, K., & Buonomano, D. V. (2011). Learning of temporal motor patterns: An analysis of continuous versus reset timing. Frontiers in Integrative Neuroscience, 5, 61. https://doi.org/10.3389/fnint.2011.00061 [DOI: 10.3389/fnint.2011.00061]
  45. Lapid, E., Ulrich, R., & Rammsayer, T. (2009). Perceptual learning in auditory temporal discrimination: No evidence for a cross-modal transfer to the visual modality. Psychonomic Bulletin & Review, 16(2), 382–389. https://doi.org/10.3758/PBR.16.2.382 [DOI: 10.3758/PBR.16.2.382]
  46. Lefever, M. M., & Ehri, L. C. (1976). The relationship between field independence and sentence disambiguation ability. Journal of Psycholinguistic Research, 5(2), 99–106. [DOI: 10.1007/BF01067251]
  47. Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255. https://doi.org/10.1016/s0959-4388(03)00036-9 [DOI: 10.1016/s0959-4388(03)00036-9]
  48. Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., & Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142(4), 475–485. https://doi.org/10.1007/s00221-001-0953-0 [DOI: 10.1007/s00221-001-0953-0]
  49. Mair, P., & Wilcox, R. (2020). Robust statistical methods in R Using the WRS2 Package. Behavior Research Methods, 52, 464–488. [DOI: 10.3758/s13428-019-01246-w]
  50. Matthews, T. E., Thibodeau, J. N., Gunther, B. P., & Penhune, V. B. (2016). The impact of instrument-specific musical training on rhythm perception and production. Frontiers in Psychology, 7, 69. https://doi.org/10.3389/fpsyg.2016.00069 [DOI: 10.3389/fpsyg.2016.00069]
  51. Matthews, W. J., & Grondin, S. (2012). On the replication of Kristofferson’s (1980) quantal timing for duration discrimination: Some learning but no quanta and not much of a Weber constant. Attention, Perception & Psychophysics, 74(5), 1056–1072. https://doi.org/10.3758/s13414-012-0282-3 [DOI: 10.3758/s13414-012-0282-3]
  52. Meck, W. H., Church, R. M., & Matell, M. S. (2013). Hippocampus, time, and memory—a retrospective analysis. Behavioral Neuroscience, 127(5), 642–654. https://doi.org/10.1037/a0034201 [DOI: 10.1037/a0034201]
  53. Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336. https://doi.org/10.1146/annurev-neuro-062012-170349 [DOI: 10.1146/annurev-neuro-062012-170349]
  54. Nagarajan, S. S., Blake, D. T., Wright, B. A., Byl, N., & Merzenich, M. M. (1998). Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 18(4), 1559–1570. https://doi.org/10.1523/JNEUROSCI.18-04-01559.1998 [DOI: 10.1523/JNEUROSCI.18-04-01559.1998]
  55. Ning, R., Trosman, S. J., Sabin, A. T., & Wright, B. A. (2019). Perceptual-learning evidence for inter-onset-interval- and frequency-specific processing of fast rhythms. Attention, Perception & Psychophysics, 81(2), 533–542. [DOI: 10.3758/s13414-018-1631-7]
  56. Ogden, R. S., Samuels, M., Simmons, F., Wearden, J., & Montgomery, C. (2018). The differential recruitment of short-term memory and executive functions during time, number, and length perception: an individual differences approach. Quarterly Journal of Experimental Psychology, 71(3), 657–669. https://doi.org/10.1080/17470218.2016.1271445 [DOI: 10.1080/17470218.2016.1271445]
  57. Paton, J. J., & Buonomano, D. V. (2018). The neural basis of timing: distributed mechanisms for diverse functions. Neuron, 98, 687–705. https://doi.org/10.1016/j.neuron.2018.03.045 [DOI: 10.1016/j.neuron.2018.03.045]
  58. Pizzamiglio, L., & Carli, R. (1973). Caratteristiche psicometriche di alcuni test di dipendenza indipendenza dal campo. Archivio Di Psicologia Neurologia e Psichiatria, 34, 276–286.
  59. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  60. Repp, B. H. (2010). Sensorimotor synchronization and perception of timing: Effects of music training and task experience. Human Movement Science, 29(2), 200–213. https://doi.org/10.1016/j.humov.2009.08.002 [DOI: 10.1016/j.humov.2009.08.002]
  61. Salidis, J. (2001). Nonconscious temporal cognition: learning rhythms implicitly. Memory & Cognition, 29(8), 1111–1119. https://doi.org/10.3758/bf03206380 [DOI: 10.3758/bf03206380]
  62. Schapiro, A. C., Kustner, L. V., & Turk-Browne, N. B. (2012). Shaping of object representations in the human medial temporal lobe based on temporal regularities. Current Biology: CB, 22(17), 1622–1627. https://doi.org/10.1016/j.cub.2012.06.056 [DOI: 10.1016/j.cub.2012.06.056]
  63. Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013). The implicit learning of metrical and nonmetrical temporal patterns. Quarterly Journal of Experimental Psychology, 66(2), 360–380. https://doi.org/10.1080/17470218.2012.712146 [DOI: 10.1080/17470218.2012.712146]
  64. Silverman, A. J., Cohen, S. I., Shmavonian, B. M., & Greenberg, G. (1961). Psychophysiological investigations in sensory deprivation. The body-field dimension. Psychosomatic Medicine, 23, 48–62. https://doi.org/10.1097/00006842-196101000-00006 [DOI: 10.1097/00006842-196101000-00006]
  65. Sohn, H., & Lee, S. H. (2013). Dichotomy in perceptual learning of interval timing: calibration of mean accuracy and precision differ in specificity and time course. Journal of Neurophysiology, 109(2), 344–362. https://doi.org/10.1152/jn.01201.2011 [DOI: 10.1152/jn.01201.2011]
  66. Spiro, R. J., & Tirre, W. C. (1980). Individual differences in schema utilization during discourse processing. Journal of Educational Psychology, 72(2), 204–208. https://doi.org/10.1037/0022-0663.72.2.204 [DOI: 10.1037/0022-0663.72.2.204]
  67. Sulpizio, V., Boccia, M., Guariglia, C., & Galati, G. (2017). Implicit coding of location and direction in a familiar, real-world “vista” space. Behavioural Brain Research, 319, 16–24. https://doi.org/10.1016/j.bbr.2016.10.052 [DOI: 10.1016/j.bbr.2016.10.052]
  68. Tascón, L., Boccia, M., Piccardi, L., & Cimadevilla, J. M. (2017). Differences in spatial memory recognition due to cognitive style. Frontiers in Pharmacology, 8, 550. https://doi.org/10.3389/fphar.2017.00550 [DOI: 10.3389/fphar.2017.00550]
  69. Teghil, A., Boccia, M., & Guariglia, C. (2019a). Field dependence-independence differently affects retrospective time estimation and flicker-induced time dilation. Experimental Brain Research, 237(4), 1019–1029. https://doi.org/10.1007/s00221-019-05485-3 [DOI: 10.1007/s00221-019-05485-3]
  70. Teghil, A., Boccia, M., D’Antonio, F., Di Vita, A., de Lena, C., & Guariglia, C. (2019b). Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews, 96, 197–209. https://doi.org/10.1016/j.neubiorev.2018.10.003 [DOI: 10.1016/j.neubiorev.2018.10.003]
  71. Teghil, A., Boccia, M., Nocera, L., Pietranelli, V., & Guariglia, C. (2020). Interoceptive awareness selectively predicts timing accuracy in irregular contexts. Behavioural Brain Research, 377, 112242. https://doi.org/10.1016/j.bbr.2019.112242 [DOI: 10.1016/j.bbr.2019.112242]
  72. Teghil, A., Di Vita, A., D’Antonio, F., & Boccia, M. (2020b). Inter-individual differences in resting-state functional connectivity are linked to interval timing in irregular contexts. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 128, 254–269. https://doi.org/10.1016/j.cortex.2020.03.021 [DOI: 10.1016/j.cortex.2020.03.021]
  73. Teghil, A., Di Vita, A., Pietranelli, V., Matano, A., & Boccia, M. (2020c). Duration reproduction in regular and irregular contexts after unilateral brain damage: Evidence from voxel-based lesion-symptom mapping and atlas-based hodological analysis. Neuropsychologia, 147, 107577. [DOI: 10.1016/j.neuropsychologia.2020.107577]
  74. Terry, J., Stevens, C. J., Weidemann, G., & Tillmann, B. (2016). Implicit learning of between-group intervals in auditory temporal structures. Attention, Perception & Psychophysics, 78(6), 1728–1743. https://doi.org/10.3758/s13414-016-1148-x [DOI: 10.3758/s13414-016-1148-x]
  75. Thavabalasingam, S., O’Neil, E. B., Tay, J., Nestor, A., & Lee, A. (2019). Evidence for the incorporation of temporal duration information in human hippocampal long-term memory sequence representations. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6407–6414. https://doi.org/10.1073/pnas.1819993116 [DOI: 10.1073/pnas.1819993116]
  76. Thönes, S., & Hecht, H. (2017). Counting does not improve the accuracy of long time productions. Attention, Perception & Psychophysics, 79(8), 2576–2589. https://doi.org/10.3758/s13414-017-1407-5 [DOI: 10.3758/s13414-017-1407-5]
  77. Tillmann, B., Stevens, C., & Keller, P. E. (2011). Learning of timing patterns and the development of temporal expectations. Psychological Research Psychologische Forschung, 75(3), 243–258. https://doi.org/10.1007/s00426-010-0302-7 [DOI: 10.1007/s00426-010-0302-7]
  78. Ullén, F., & Bengtsson, S. L. (2003). Independent processing of the temporal and ordinal structure of movement sequences. Journal of Neurophysiology, 90(6), 3725–3735. https://doi.org/10.1152/jn.00458.2003 [DOI: 10.1152/jn.00458.2003]
  79. van Wassenhove, V., & Nagarajan, S. S. (2007). Auditory cortical plasticity in learning to discriminate modulation rate. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 27(10), 2663–2672. https://doi.org/10.1523/JNEUROSCI.4844-06.2007 [DOI: 10.1523/JNEUROSCI.4844-06.2007]
  80. Villacorta, P. (2017). The welchADF package for robust hypothesis testing in unbalanced multivariate mixed models with heteroscedastic and non-normal data. The R Journal, 9, 309–328. https://doi.org/10.32614/rj-2017-049 [DOI: 10.32614/rj-2017-049]
  81. Warm, J. S., Stutz, R. M., & Vassolo, P. A. (1975). Intermodal transfer in temporal discrimination. Perception & Psychophysics, 18, 281–286. https://doi.org/10.3758/BF03199375 [DOI: 10.3758/BF03199375]
  82. Westheimer, G. (1999). Discrimination of short time intervals by the human observer. Experimental Brain Research, 129, 121–126. https://doi.org/10.1007/s002210050942 [DOI: 10.1007/s002210050942]
  83. Wiener, M., & Kanai, R. (2016). Frequency tuning for temporal perception and prediction. Current Opinion in Behavioral Sciences, 8, 1–6. https://doi.org/10.1016/j.cobeha.2016.01.001 [DOI: 10.1016/j.cobeha.2016.01.001]
  84. Wiener, M., Matell, M. S., & Coslett, H. B. (2011). Multiple mechanisms for temporal processing. Frontiers in Integrative Neuroscience, 5, 1–3. https://doi.org/10.3389/fnint.2011.00031 [DOI: 10.3389/fnint.2011.00031]
  85. Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. NeuroImage, 49, 1728–1740. https://doi.org/10.1016/j.neuroimage.2009.09.064 [DOI: 10.1016/j.neuroimage.2009.09.064]
  86. Wiener, M., Zhou, W., Bader, F., & Joiner, W. M. (2019). Movement improves the quality of temporal perception and decision-making. eNeuro, 6(4), ENEURO.0042-19.2019. https://doi.org/10.1523/ENEURO.0042-19.2019
  87. Witkin, H. A. (1977). Cognitive style in personal and cultural adaptation. Clark University Press.
  88. Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. (1971). A manual for the embedded figures test. Consulting Psychologists Press.
  89. Wittmann, M., Carter, O., Hasler, F., Cahn, B. R., Grimberg, U., Spring, P., Hell, D., Flohr, H., & Vollenweider, F. X. (2007). Effects of psilocybin on time perception and temporal control of behaviour in humans. Journal of Psychopharmacology, 21(1), 50–64. [DOI: 10.1177/0269881106065859]
  90. Wittmann, M., & Paulus, M. P. (2008). Decision making, impulsivity and time perception. Trends in Cognitive Sciences, 12(1), 7–12. https://doi.org/10.1016/j.tics.2007.10.004 [DOI: 10.1016/j.tics.2007.10.004]
  91. Wittmann, M., Simmons, A. N., Flagan, T., Lane, S. D., Wackermann, J., & Paulus, M. P. (2011). Neural substrates of time perception and impulsivity. Brain Research, 1406, 43–58. https://doi.org/10.1016/j.brainres.2011.06.048 [DOI: 10.1016/j.brainres.2011.06.048]
  92. Wright, B. A., Buonomano, D. V., Mahncke, H. W., & Merzenich, M. M. (1997). Learning and generalization of auditory temporal-interval discrimination in humans. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 17(10), 3956–3963. https://doi.org/10.1523/JNEUROSCI.17-10-03956.1997 [DOI: 10.1523/JNEUROSCI.17-10-03956.1997]
  93. Wright, B. A., Wilson, R. M., & Sabin, A. T. (2010). Generalization lags behind learning on an auditory perceptual task. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience, 30(35), 11635–11639. https://doi.org/10.1523/JNEUROSCI.1441-10.2010 [DOI: 10.1523/JNEUROSCI.1441-10.2010]
  94. Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological Science, 6, 12–16. [DOI: 10.1111/1467-8721.ep11512604]
  95. Zhang, M., Xie, W., Xu, Y., & Meng, X. (2018). Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia. Research in Developmental Disabilities, 74, 146–159. https://doi.org/10.1016/j.ridd.2018.01.005 [DOI: 10.1016/j.ridd.2018.01.005]

MeSH Term

Humans
Time Perception
Learning
Personality
Thinking
Cognition

Word Cloud

Created with Highcharts 10.0.0learningtemporalsuprasecondeventsrangealthoughvariabilityeffectcognitivestimulusIBLtimingdifferencesdimensionsstylerepresentationdependsassessedconditiondurationwithintrialnumbervariedECLacquisitioninformationactionsoccurssubsecondHoweverrelevantparticipantsreportedroleindividualaffectingperformancetasksstillunclearinvestigatedissueassessingfield-dependent/independentSincedifferentmechanismsmediateself-generatedexternalreferenttwoconditionsParticipantsobservedacrosssixrepetitionsreproducedUnbeknownstinternally-basedfixeddefiningexternally-cueddefinedreproductionmodalityalsomotorvsperceptualErrorscoreshighercomparedreversetrueField-independentindividualsperformedbetterfield-dependentonesconfirmedcorrelationanalysesFindingsprovideevidencehigh-levelfunctioningfielddependence/independencesignificantlyaffecttypefosteredspecifictaskdemandsTemporalrange:insights

Similar Articles

Cited By