Newcastle disease virus genotype VII gene expression in experimentally infected birds.

Phuong Thi Kim Doan, Wai Yee Low, Yan Ren, Rick Tearle, Farhid Hemmatzadeh
Author Information
  1. Phuong Thi Kim Doan: School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia. phuong.doan@adelaide.edu.au.
  2. Wai Yee Low: Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.
  3. Yan Ren: Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.
  4. Rick Tearle: Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.
  5. Farhid Hemmatzadeh: School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.

Abstract

Newcastle disease virus genotype VII (NDV-GVII) is a highly contagious pathogen responsible for pandemics that have caused devastating economic losses in the poultry industry. Several features in the transcription of NDV mRNA, including differentially expressed genes across the viral genome, are shared with that for other single, non-segmented, negative-strand viruses. Previous studies measuring viral gene expression using northern blotting indicated that the NDV transcription produced non-equimolar levels of viral mRNAs. However, deep high-throughput sequencing of virus-infected tissues can provide a better insight into the patterns of viral transcription. In this report, the transcription pattern of virulent NDV-GVII was analysed using RNA-seq and qRT-PCR. This study revealed the transcriptional profiling of these highly pathogenic NDV-GVII genes: NP:P:M:F:HN:L, in which there was a slight attenuation at the NP:P and HN:L gene boundaries. Our result also provides a fully comprehensive qPCR protocol for measuring viral transcript abundance that may be more convenient for laboratories where accessing RNA-seq is not feasible.

References

  1. Sci Rep. 2018 Apr 26;8(1):6558 [PMID: 29700338]
  2. PLoS One. 2020 Jan 10;15(1):e0227558 [PMID: 31923213]
  3. J Virol. 1978 Oct;28(1):324-36 [PMID: 702653]
  4. Clin Vaccine Immunol. 2017 May 5;24(5): [PMID: 28331077]
  5. EMBO J. 1987 Mar;6(3):681-8 [PMID: 3582370]
  6. Virology. 2015 May;479-480:545-54 [PMID: 25683441]
  7. Arch Virol. 2019 Jul;164(7):1967-1980 [PMID: 31089958]
  8. J Gen Virol. 2013 Jun;94(Pt 6):1189-1194 [PMID: 23426356]
  9. Sci Rep. 2016 Apr 21;6:24721 [PMID: 27097866]
  10. Virol J. 2015 Sep 04;12:133 [PMID: 26336954]
  11. J Virol. 2003 Jan;77(2):1501-11 [PMID: 12502864]
  12. J Biotechnol. 2006 May 29;123(3):273-80 [PMID: 16388869]
  13. J Virol. 2004 Sep;78(18):9837-41 [PMID: 15331718]
  14. PLoS One. 2010 Mar 05;5(3):e9545 [PMID: 20221433]
  15. Dev Comp Immunol. 2013 Dec;41(4):505-13 [PMID: 23796788]
  16. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  17. J Virol. 2010 Oct;84(19):10113-20 [PMID: 20660202]
  18. BMC Res Notes. 2016 Feb 12;9:88 [PMID: 26868221]
  19. J Virol. 2012 Aug;86(16):8884-9 [PMID: 22674990]
  20. PLoS One. 2018 Aug 2;13(8):e0201827 [PMID: 30071116]
  21. Vet Pathol. 2011 Mar;48(2):349-60 [PMID: 20685918]
  22. Genome Biol. 2014;15(11):532 [PMID: 25398248]
  23. Avian Pathol. 2006 Apr;35(2):99-101 [PMID: 16595300]
  24. Arch Virol. 2005 Mar;150(3):521-32 [PMID: 15526144]
  25. Avian Pathol. 2001 Oct;30(5):439-55 [PMID: 19184932]
  26. J Virol. 2019 Aug 13;93(17): [PMID: 31189700]
  27. PLoS Pathog. 2020 Jun 30;16(6):e1008610 [PMID: 32603377]
  28. J Virol. 2016 Apr 29;90(10):4876-4888 [PMID: 26656699]
  29. J Virol. 2011 Jan;85(2):697-704 [PMID: 21068252]
  30. J Virol. 1999 Jun;73(6):5001-9 [PMID: 10233962]
  31. Virus Res. 2014 May 12;184:71-81 [PMID: 24589707]
  32. Microbiol Resour Announc. 2020 Jun 4;9(23): [PMID: 32499364]
  33. Proc Natl Acad Sci U S A. 1976 May;73(5):1504-8 [PMID: 179088]
  34. J Virol. 1999 Jun;73(6):4705-12 [PMID: 10233930]
  35. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  36. Virus Res. 1984 Oct;1(7):585-95 [PMID: 6534032]
  37. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3501-6 [PMID: 9520395]
  38. Vet Immunol Immunopathol. 2011 Jun 15;141(3-4):221-9 [PMID: 21458080]
  39. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  40. Virology. 1990 Jul;177(1):131-40 [PMID: 1693801]
  41. Virology. 1987 Oct;160(2):523-6 [PMID: 3660593]
  42. J Virol. 1980 Sep;35(3):682-93 [PMID: 7420539]
  43. Virol J. 2012 Sep 13;9:197 [PMID: 22971647]
  44. J Virol. 2008 Dec;82(24):12569-73 [PMID: 18829754]
  45. J Infect Dis. 2011 Nov;204 Suppl 3:S878-83 [PMID: 21987764]
  46. J Virol. 2012 May;86(9):5253-63 [PMID: 22345453]
  47. Sci Rep. 2021 Sep 2;11(1):17570 [PMID: 34475461]
  48. Annu Rev Genet. 1998;32:123-62 [PMID: 9928477]

MeSH Term

Animals
Chickens
Gene Expression
Genotype
Newcastle disease virus
Poultry Diseases

Word Cloud

Created with Highcharts 10.0.0viraltranscriptionNDV-GVIIgeneNewcastlediseasevirusgenotypeVIIhighlyNDVmeasuringexpressionusingRNA-seqcontagiouspathogenresponsiblepandemicscauseddevastatingeconomiclossespoultryindustrySeveralfeaturesmRNAincludingdifferentiallyexpressedgenesacrossgenomesharedsinglenon-segmentednegative-strandvirusesPreviousstudiesnorthernblottingindicatedproducednon-equimolarlevelsmRNAsHoweverdeephigh-throughputsequencingvirus-infectedtissuescanprovidebetterinsightpatternsreportpatternvirulentanalysedqRT-PCRstudyrevealedtranscriptionalprofilingpathogenicgenes:NP:P:M:F:HN:LslightattenuationNP:PHN:LboundariesresultalsoprovidesfullycomprehensiveqPCRprotocoltranscriptabundancemayconvenientlaboratoriesaccessingfeasibleexperimentallyinfectedbirds

Similar Articles

Cited By (2)